Approximation Algorithms

02282 Inge Li Gørtz

Examples

- Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of edges from E such that the resulting graph is acyclic.
 - Give a 1/2-approximation algorithm for this problem.

Minimum Maximal Matching

- A matching in a graph G=(V,E) is a subset of edges $M \subseteq E$, such that no two edges in M share an endpoint.
- A maximal matching is a matching that cannot be extended, i.e., it is not possible to add an edge from E \ M to M without violating the constraint.
- Design a 2-approximation algorithm for finding a minimum cardinality maximal matching in an undirected graph.

Approximation algorithms

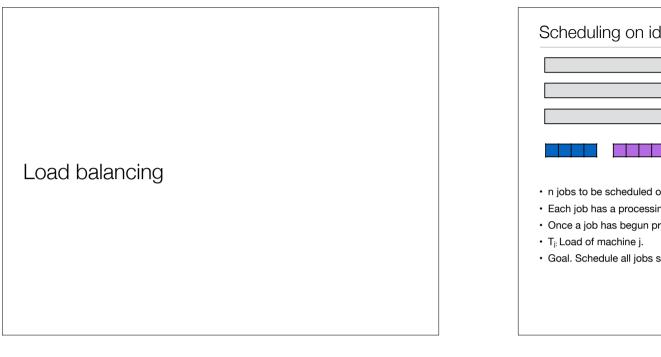
- Fast. Cheap. Reliable. Choose two.
- NP-hard problems: choose 2 of
 - optimal
 - polynomial time
 - all instances
- · Approximation algorithms. Trade-off between time and quality.
- Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an *aapproximation algorithm* if for any instance I of the optimization problem:
 - A runs in polynomial time
 - · A returns a valid solution
 - A(I) $\leq \alpha \cdot \text{OPT}$, where $\alpha \geq 1$, for minimization problems
 - A(I) $\geq \alpha \cdot \text{OPT}$, where $\alpha \leq 1$, for maximization problems

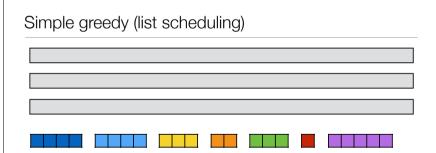
Examples

- Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of edges from E such that the resulting graph is acyclic.
 - Give a 1/2-approximation algorithm for this problem.
 - · Lower bound what is the best we can hope for?
 - Arbitrarily number the vertices and pick the bigger of the two sets, the forward going edges and the backward going edges.

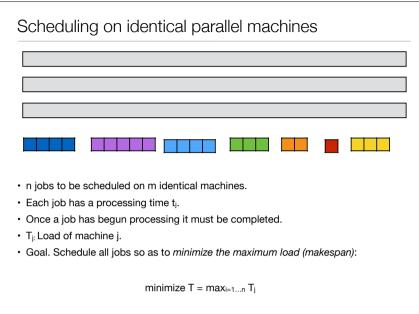
Minimum Maximal Matching

- A matching in a graph G=(V,E) is a subset of edges M \subseteq E, such that no two edges in M share an endpoint.
- A maximal matching is a matching that cannot be extended, i.e., it is not possible to add an edge from E\setminus M to M without violating the constraint.
- Design a 2-approximation algorithm for finding a minimum cardinality maximal matching in an undirected graph.
- Lower bound: Any maximal matching is at least half the maximum maximal matching. Why?

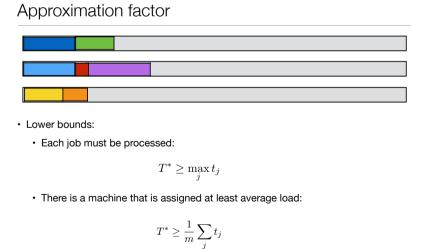


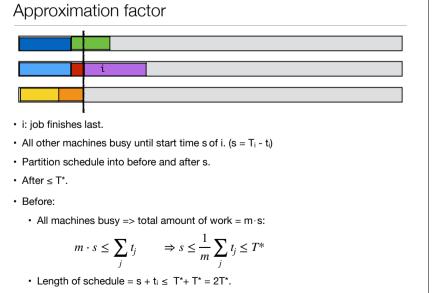


- Simple greedy. Process jobs in any order. Assign next job on list to machine with smallest current load.
- The greedy algorithm above is a 2-approximation algorithm:
 - polynomial time \checkmark
 - valid solution \checkmark
 - factor 2



Simple greedy (list scheduling)

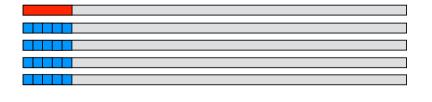




Lower bound

Lower bound

Lower bound



Longest processing time rule

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

 Longest processing time rule Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle. LPT is a is a 3/2-approximation algorithm: polynomial time 	 Longest processing time rule: factor 3/2 Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle. Assume t₁ ≥ ≥ t_n. If n ≤ m then optimal. Lower bound: If n > m then T* ≥ 2t_{m+1}. Factor 3/2: Before s ≤ T*
 valid solution / factor 3/2 	• After: i job that finishes last. • $t_i \le t_{m+1} \le T^*/2$. • $T \le T^* + T^*/2 \le 3/2 T^*$. • Tight?

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $t_1 \ge \ldots \ge t_n$.
- Assume wlog that smallest job finishes last.
- If $t_n \leq T^*/3$ then $T \leq 4/3 T^*$.
- If $t_n > T^*/3$ then each machine can process at most 2 jobs in OPT.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.
- **Theorem.** LPT is a 4/3-approximation algorithm.

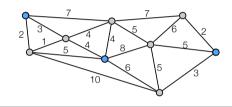
k-center

The k-center problem

- Input. An integer k and a set of sites S with distance d(i,j) between each pair of sites $i,j\in S.$
- d is a metric:
 - dist(i,i) = 0
 - dist(i,j) = dist(j,i)
 - dist(i,l) \leq dist(i,j) + dist(j,l)
- Goal. Choose a set $C\subseteq S$, |C|=k, of k centers so as to minimize the maximum distance of a site to its closest center.

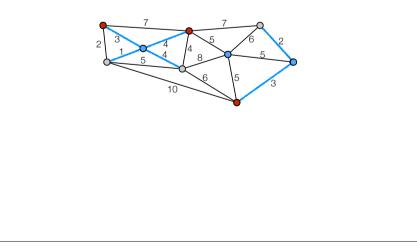
 $C = \operatorname{argmin}_{C \subseteq V, |C|=k} \operatorname{max}_{i \in V} \operatorname{dist}(i, C)$

Covering radius. Maximum distance of a site to its closest center.



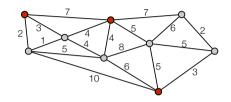
k-center analysis: optimal clusters

Optimal clusters: each site assigned to its closest optimal center.



k-center: Greedy algorithm

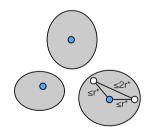
- · Greedy algorithm.
 - Pick arbitrary i in S.
 - Set C = {i}
 - while |C| < k do
 - · Find site j farthest away from any cluster center in C
 - Add j to C
 - Return C



- Greedy is a 2-approximation algorithm:
 - polynomial time
 - valid solution
 - factor 2

k-center analysis

- r* optimal radius.
- Claim: Two sites in same optimal cluster has distance at most $2r^*$ to each other.

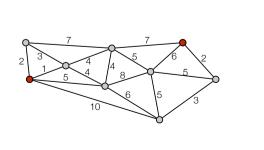


k-center

Bottleneck algorithm

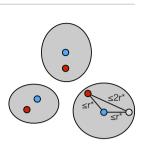
- · Assume we know the optimum covering radius r.
- · Bottleneck algorithm.
 - Set R := S and C := Ø.
 - while R ≠ Ø do
 - Pick arbitrary j in R.
 - Add j to C
 - Remove all sites with $d(j,v) \le 2r$ from R.
 - Return C

• Example: k= 3. r = 4.



k-center: analysis greedy algorithm

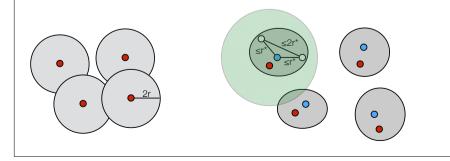
- r* optimal radius.
- Show all sites within distance 2r* from a center.
- Consider optimal clusters. 2 cases.
 - 1. Algorithm picked one center in each optimal cluster
 - distance from any sites to its closest center ≤ 2r*.



- 2. Some optimal cluster does not have a center.
- Some cluster have more than one center.
- Distance between these two centers $\leq 2r^*$.
- When second center in same cluster picked it was the site farthest away from any center.
- Distance from any site to its closest center at most 2r*.

Analysis bottleneck algorithm

- r* optimal radius.
- Covering radius is at most 2r = 2r*.
- · Show that we cannot pick more than k centers:
 - We can pick at most one in each optimal cluster:
 - Distance between two nodes in same optimal cluster ≤ 2r.*
 - When we pick a center in a optimal cluster all nodes in same optimal cluster is removed.



Analysis bottleneck algorithm

- r* optimal radius.
- Can use algorithm to "guess" r* (at most n² values).
- If algorithm picked more than k centers then $r^* > r$.
 - If algorithm picked more than k centers then it picked more than one in some optimal cluster.
 - Distance between two nodes in same optimal cluster $\leq 2r.^*$
 - If more than one in some optimal cluster then 2r < 2r*.

