
Weekplan: Suffix Trees I

Philip Bille and Inge Li Gørtz

References and Reading

[1] Tries and Suffix Trees. Inge Li Gørtz.

[2] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield

We recommend reading [1] in detail. [2] provides an extensive list of applications of suffix trees.

Exercises

1 [w] Suffix Trees Draw the suffix tree T for the string mississippi$. Write edge labels (substrings) and
leaf labels (suffix number). Illustrate how a search for "issi"works.

2 [w] Substring Counting Let S = s0s1 · · · sn−1 be a string of length n over an alphabet Σ. We are interested in
a data structure for S that supports the following query.

• count(P): return the number of occurrences of P in S.

Give a data structure that supports count(P) queries efficiently.

3 Number of nodes in a compact trie Let T be a tree where every internal node has a least 2 children. Let `
be the number of leaves in T and let i be the number of internal nodes. Use induction to prove that i ≤ `−1. Give
an example showing that this is a tight bound.

4 Repeats Solve the following exercises. Assume you have an efficient black-box algorithm for computing the
suffix tree of a string.

4.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the
length of a longest substring of S that is a repeat.

4.2 Given a string S of length n and an integer k, show how to efficiently find the smallest substring of S occurring
exactly k times. Analyze the time and space consumption of your algorithm.

5 Longest Common Extensions Let S be a string of length n over alphabet Σ. The longest common extension
problem is to preprocess S into data structure to support queries of the following form:

• LCE(i,j): Return the length of the longest common prefix of S[i, n] and S[j, n].

6 Restricted Suffix Search Let S be a string of length n over alphabet Σ. Give an efficient data structure for S
that supports the following query:

• rsearch(P, i, j): report the starting positions of occurrences of string P in S[i, j].

1

7 DNA contamination [2] Various laboratory processes used to isolate, purity, clone, copy, maintain, probe, or
sequence a DNA string can course unwanted DNA to become inserted into the string of interest or mixed together
with a collection of strings. Often, the DNA sequences from many of the possible contaminants are known. This
motivates the following computational problem:

Given a string S1 (the newly isolated and sequenced string of DNA) and a string S2 (the combined sources of
possible contamination), find all substrings of S2 that occur in S1 and that are longer than some given length `.
These substrings are candidates for unwanted pieces of S2 that have contaminated the desired DNA string. Give
an efficient algorithm to solve the problem.

8 Lexicographically smallest shift In chemical databases for circular molecules, each molecule is represented
by a circular string of chemical characters. To allow faster lookup and comparisons of molecules, one wants to
store each circular string by a canonical linear string. A natural choice for a canonical linear strings the one that
is lexicographically smallest. That gives the following computational problem.

Assume we are given a string T = x1 . . . xn of length n. A shift of T by s, 0 ≤ s < n, is the string T s =
xs+1 xs+2 . . . xn x1 x2 . . . xs. In this problem we want to find the lexicographically smallest shift, i.e. the shift s where
T s is lexicographically smallest among T 0, . . . , T n−1. Eg. T 2 = T 7 = a a b a b a a b a b are the lexicographically
smallest shifts of the string

T = a b a a b a b a a b

8.1 State all s where T s is a lexicographically smallest shift of the string

T = b c a b a a b c a b a a b c a b a a

8.2 Describe an algorithm that given a string T of length n over an alphabet of size O(1) computes all s where
T s is a lexicographically smallest shift of T . State the algorithms running time.

2

