Hashing

* Dictionaries

+ Chained Hashing

» Universal Hashing

» Static Dictionaries and Perfect Hashing

Philip Bille

Hashing

* Dictionaries

Dictionaries

+ Dictionary problem. Maintain a dynamic set of integers S ¢ U subject to following
operations
+ LOOKUP(x): return true if x € S and false otherwise.

+ INSERT(X): set S =S u {x}
+ DELETE(x): set S = S\ {x}

+ Universe size. Typically |U| = 264 or |U| = 232and |S]| « |U|.

+ Satellite information. Information associated with each integer.

+ Goal. A compact data structure with fast operations.

Dictionaries

» Applications.
* Many!
+ Key component in other data structures and algorithms.

Dictionaries

» Which solutions do we know?

Hashing

+ Chained Hashing

Chained Hashing

+ Chained hashing [Dumey 1956].

+ Hash function. Pick some crazy, chaotic, random function h that maps U to
{0, ..., m-1}, where m = O(n).

« Initialize an array A[O, ..., m-1].
+ A[i] stores a linked list containing the keys in S whose hash value is i.

Chained Hashing
e

=]
[—{eel{rel—{ee]

u={0, ..., 99}
S ={1, 16, 41, 54, 66, 96}
h(x) = x mod 10

© O NO O s WN-—=+ O

» Operations.

» LOOKUP(x): Compute h(x). Scan through list for h(x). Return true if x is in list and
false otherwise.

+ INSERT(x): Compute h(x). Scan through list for h(x). If x is in list do nothing.
Otherwise, add x to the front of list.

+ DELETE(x): Compute h(x). Scan through list for h(x). If x is in list remove it.
Otherwise, do nothing.

» Time. O(1 + length of linked list for h(x))

Chained Hashing

» Hash functions.
+ h(x) = x mod 10 is not very crazy, chaotic, or random.

« For any fixed choice of h, there is a set whose elements all map to the same slot.

+ = We end up with a single linked list.

+ How can we overcome this?

Use randomness.
» Assume the input set is random.
+ Choose the hash function at random.

Chained Hashing

» Random hash functions. Assume that:
1. his chosen uniformly at random among all functions from U to {0,..., m-1}
2. We can store h in O(n) space.
3. We can evaluate h in O(1) time

+ What is the expected length of the linked lists?

Chained Hashing
E(length of linked list for h(x)) = E ([{y € S| h(y) = h(x)}|)
(5 m)
-Se(fe woan)

=Y "Pr(h(x) = h(y))

=)
=1+ Y Pr(h(x)=h(y))
yes\{x}
1
=1+ Z — m?2 choices for pair (h(x), h(y)),
yeS\{x} m m of which cause collision

=1+ (n-1)- - =0(1)

Chained Hashing

» Theorem. We can solve the dictionary problem (under assumptions 1+2+3) in
+ O(n) space.
+ O(1) expected time per operation.

» Expectation is over the choice of hash function.

+ Independent of the input set.

Chained Hashing Chained Hashing

» Random hash functions assumptions.
1. his chosen uniformly at random among all functions from U to {0,..., m-1}
2. We can store h in O(n) space. 1 if h(y) = h(x)
. . =E|Y i
3. We can evaluate h in O(1) time 0 if h(y) # h(x)

E(length of linked list for h(x)) = E ([{y € S | h(y) = h(x)}|)

yeSs
1 if h(y) = h(x)
+ Random hash functions. Can we efficiently compute and store a random function? = Z E 0 if hly) # h(x)
+ We need O(u log m) bits to store an arbitrary function h: {0,..., u-1} = {0,..., m-1} ves
* We need a lot of random bits to generate the function. - yezs Prih(x) = h(y)
* We need a lot of time to generate the function.
9 =1+ > Pr(h(x) = h(y)))
yes\{x}
+ Do we need a truly random hash function? —14 Z 1 For all x # v, Pr(h(x) = h(y)) < 1/m
» When did we use the fact that h was random in our analysis? yes\{x} m

=1+(n—1)~%=0(1)

Universal Hashing

+ Universel hashing [Carter and Wegman 1979].

. + Let H be a family of functions mapping U to {0, ..., m-1}.
HaShIﬂg » His universal if for any xzy in U and h chosen uniformly at random in H,
Pr(h(x) = h(y)) = 1/m

» Universal Hashing

Universal Hashing

+ Positional number systems. For integers x and m, the base-m representation of x is
X written in base m.

+ Example.
* (10)10=(1010)2 (1-28+0-22+1-21+0-20)
* (107)10=(212)7 2-72+1-71+2-79)

Universal Hashing

+ Hash function. Given a prime m and a = (a1az...a)m, define
ha((X1X2...X)m) = @1X1 + @2X2 + ... + aXr mod m
» Example.
*m=7
ca= (107)10 = (212)7
+ X =(214)10 = (424)7
* hax)=2-4+1-2+2-4mod7=18mod 7 =4

Universal family.
* H={ha| (a1@2...a)m € {0, ..., m-1}1}
+ Choose random hash function from H ~ choose random a.
» His universal (analysis next).
» O(1) time evaluation.
» O(1) space.
+ Fast construction.

Universal Hashing

» Lemma. Let m be a prime. For any a € {1, ..., m-1} there exists a unique inverse a-!
suchthata' - a=1 mod m. (Zn is a field)

+ Example. m=7

112345 |6
a-‘l
a |1
a'| 1

Universal Hashing

+ Goal. For random a = (a1az...a)m, show that if X = (X1X2...X)m # Y = (y1y2...y)m then
Pr[ha(x) = ha(y)] = 1/m

+ (X1X2...X)m # (Y1Y2...y)m => Xi # Yi for some i. Assume wlog. that x; # yr.

Pr(ha((xa ... x)m) = ha((v1 -, ¥e)m))

=Pr(apxi+--+ax =ay1+-+ay, mod m)

=Pr(a:x, — ayy = ary1 — arxy + -+ + a—1Yr—1 — ar—1%—1 mod m) existence of inverses
=Pr(a:(x —y) = a1 —x1) + -+ ar—1(¥r—1 — %—1) mod m)

=Pr (a,(x, — Y) (X —)4)71 = —x)+-Fa—1(Vr-1 — X—1)) (X —)@)71 mod m)

1
=Pr(a,=(a1ly1 —x1) + -+ a—1(¥r—1 — X—1)) (% — ¥)"* mod m) = -

/

for any choice of at, ay, ..., a-1, the RH defines a unique arthat matches (uniqueness of inverses).
Of the mr choices for a1, as, ..., arexactly mr1 cause a collision = probability is m~/mr=1/m

Universal Hashing

» Lemma. H is universal with O(1) time evaluation and O(1) space.

+ Theorem. We can solve the dictionary problem (without special assumptions) in:
+ O(n) space.

+ O(1) expected time per operation (lookup, insert, delete).

Universal Hashing

+ Other universal families.
» Forprimep>0,ae{l,.,p-1},be{0, .., p-1}

hab(x) = ax+ b mod m
H={hplae{l,..., m—1}beA0,..., m—1}}

+ Hash function from k-bit numbers to I-bit numbers. a is an odd k-bit integer.

| most significant bits of the k least significant bits of ax

—

ha(x) = (ax mod 25) > (k —)
H={h, | ais an odd integer in {1, ..., 2k —1}}

Hashing

» Static Dictionaries and Perfect Hashing

Static Dictionaries and Perfect Hashing

» Static dictionary problem. Given a set S ¢ U = {0,..,u-1} of size n for preprocessing
support the following operation

* lookup(x): return true if x € S and false otherwise.

+ As the dictionary problem with no updates (insert and deletes).
» Set given in advance.

Static Dictionaries and Perfect Hashing

+ Dynamic solution. Use chained hashing with a universal hash function as before =
solution with O(n) space and O(1) expected time per lookup.

+ Can we do better?

« Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.
+ Perfect hash function in O(n) space and O(1) evaluation time = solution with
O(n) space and O(1) worst-case lookup time.

+ Do perfect hash functions with O(n) space and O(1) evaluation time exist for any
set §?

Static Dictionaries and Perfect Hashing

» Goal. Perfect hashing in linear space and constant worst-case time.
+ Solution in 3 steps.

+ Solution 1. Collision-free but with too much space.

+ Solution 2. Many collisions but linear space.

+ Solution 3: FKS scheme [Fredman, Komlds, Szemerédi 1984]. Two-level solution.
Combines solution 1 and 2.

+ At level 1 use solution with lots of collisions and linear space.
+ Resolve collisions at level 1 with collision-free solution at level 2.

+ lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in
level 2 dictionary.

Static Dictionaries and Perfect Hashing

+ Solution 1. Collision-free but with too much space.

+ Use a universal hash function to map into an array of size n2. What is the expected
total number of collisions in the array?

L 1 if h(y) = h(x)
E(#collisions) = E (X'yezs;x#y {O i hy) 2 h))
o 1 if h(y) = h(x
"2t <{0 i h(y) # h(x))
2
ST Pr(h(x) = h(y)) = ()i <2l

X, YES xF#y

#distinct pairs universal hashing into n2 range
+ With probability 1/2 we get perfect hashing function. If not perfect try again.
. = Expected number of trials before we get a perfect hash function is O(1).

. = For a static set S we can support lookups in O(1) worst-case time using O(n?)
space.

Static Dictionaries and Perfect Hashing

+ Solution 2. Many collisions but linear space.

+ As solution 1 but with array of size n. What is the expected total number of collisions
in the array?

E(#-collisions) = E (Z {é if h(y) = h(x)

i, 0 ifh(y) # h(x)
_ 1 if h(y) = h(x)
- X,y;s:,w : ({0 it h(y) # h(x))
N1l n? 1
- Fru=hen = (3)i<F 33

Static Dictionaries and Perfect Hashing

+ Solution 3. Two-level solution.
+ At level 1 use solution with lots of collisions and linear space.
+ Resolve each collisions at level 1 with collision-free solution at level 2.

+ lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level
2 dictionary.

+ Example. —

- S={1, 16, 41, 54, 66, 96} T T

+ Level 1 collision sets: —

- Si={1, 41}, I
« S4= {54}, 4 —_>
- S = {16, 66, 96} T
- Level 2 hash info stored with subtable. & —ﬁ‘ | 16 | | 9% | | | 66 | | ‘

« (size of table, multiplier a, prime p) 7
+ Time. O(1) 8
+ Space? L

Static Dictionaries and Perfect Hashing

» Space. What is the the total size of level 1 and level 2 hash tables?

& ® N = o

#collisions = Z <‘§"> =0(n)

2> = a+2(3), for any integer a

space = O (wZ\&-F) /O<H+Z (‘5/‘ +2<|52,-\>>>

-0 (HZ\S,-\ +23° <‘§")> =O(n+ n+2n)=0(n)

Static Dictionaries and Perfect Hashing

+ FKS scheme.
+ O(n) space and O(n) expected preprocessing time.
+ Lookups with two evaluations of a universal hash function.

+ Theorem. We can solve the static dictionary problem for a set S of size n in:
+ O(n) space and O(n) expected preprocessing time.
+ O(1) worst-case time per lookup.

» Multilevel data structures.

+ FKS is example of multilevel data structure technique. Combine different
solutions for same problem to get an improved solution.

Hashing

* Dictionaries

+ Chained Hashing

» Universal Hashing

» Static Dictionaries and Perfect Hashing

