Range

_Reporting

« Range reporting problem

1D range reporting

- Range trees

« 2D range reporting

- Range trees

* Predecessor in nested sets

* kD trees

Philip Bille

Range Reporting

« Range reporting problem

Range Reporting Problem

* 2D range reporting problem. Preprocess at set of points P ¢ 912 to support

- report(x1, y1, X2, y2): Return the set of points in R n P, where R is rectangle given
by (x1, y1) and (xz, y2).

(X1, y1)

. (X2, y2)

Applications

 Relational databases. SELECT all employees between 60 and 70 years old with a
montly salary between 60000 and 80000 DKr

Salary 4

80000

60000

60 70 age

Range Reporting

1D range reporting
- Range trees

1D Range Reporting

* 1D range reporting. Preprocess a set of n points P € ‘R to support:
* report(xs, X2): Return the set of points in interval [x1, X2]
« Output sensitivity. Time should depend on the size of the output.

- Simplifying assumption. Only comparison-based techniques (e.g. no hashing or
bittricks).

« Solutions?

1D Range Reporting

70

- Sorted array. Store P in sorted order.

« Report(x1, x2): Binary search for predecessor of x1. Traverse array until > xo.
« Time. O(log n + occ)

- Space. O(n)

- Preprocessing. O(n log n)

1D Range Reporting

« Theorem. We can solve the 1D range reporting problem in
« O(n) space.
* O(log n + occ) time for queries.
« O(n log n) preprocessing time.

« Optimal in comparison-based model.

Range Reporting

2D range reporting
« Range trees
* Predecessor in nested sets
- kD trees

2D Range reporting

« Goal. 2D range reporting with
« O(n log n) space and O(log n + occ) query time or
- O(n) space and O(n'2 + occ) query time.
« Solution in 4 steps.
« Generalized 1D range reporting.
« 2D range trees.
« 2D range trees with bridges.
« kD trees.

Generalized 1D Range Reporting

 Data structure.
« 1D range tree Tx over x-coordinate
« 1D range tree Ty over y-coordinate
* Report(xi, y1, X2, Y2):
« Compute all points Rx in x-range.
« Compute all points Ry in y-range.
« Return Rx n Ry

e Time?

2D Range Trees

 Data structure.

 Perfectly balanced binary tree over x-coordinate.

« Each node v stores array of point below v sorted by y coordinate.
« Space. O(n) + O(n log n) = O(n log n).
« Preprocessing time. O(n log n)

"y b 3 »
lllllllllll

2D Range Trees

« Report(x1, y1, X2, y2): Find paths to predecessor of x1 and successor of xo.
At each off-path node do 1D query on y-range.
« Return union of results.
« Time.
« Predecessor + successor: O(log n)
« < 2log n 1D queries: O(log n + occ in subrange) time per query.

- = total O(log® n + occ) time.

‘e *

2D Range Reporting

« Theorem. We can solve the 2D range reporting problem in
* O(n log n) space.
» O(log? n + occ) time for queries.
« O(n log n) preprocessing time.

 Challenge. Do we really need the log? n term for queries? Can we get (optimal) O(log
n + occ) instead?

Range Reporting

* Predecessor in nested sets

Predecessor in Nested Sets

« Predecessor problem in nested sets. Let S = {S1, Sy, ..

universe U suchthatU 2 S12 Ss2 --- 2 Sk

St
So
Ss

Sk-1
Sk

« predecessor(x): return the predecessor of x in each of S1, Sy, ..., Sk.

., Sk} be a family of sets from

==

= =

= =

= =

= =

ISl =niand N1 + N2 + - + Nk =n

u-1

Predecessor in Nested Sets

« Goal. Predecessor in nested sets with O(n) space and O(log n + k) query time.
« Solution in 3 steps.

- Sorted arrays. Slow and linear space.

« Tabulation. Fast but too much space.

- Sorted arrays with bridges. Fast and little space.

Solution 1: Sorted Arrays

S+
So

Ss

Sk

- Data structure. Sorted arrays for each set.

« Predecessor(x): Binary search in each array.

« Time. O(log n1 + log n2 + -+ + log nk) = O(k log n)
- Space. O(n)

X
ISl =niand N1 + N2 + - + Nk =n

u-1

Solution 2: Tabulation

S Ll Ll LLL 1 |§ l L1 l l l Ll l
1 1 1 I I3 | 1 | | | 1 |
S l Ll LL 1 i L1 l l l l l
2 1 1 T BB 1 1 1 1 1 1
Ll l l R | ! l l l l
Ss 1 1 - B ” 1 1 1 1
* D :
1
]
1
1
1
1
1
]
1
1
..” .'. []
S l g l I 1 l l
k-1 | — | 1 T | |
0". '
o l
Sk | |
0 u-1

X
ISl =niand N1 + N2 + - + Nk =n

Data structure. Sorted array on S1 + each entry stores k-1 predecessors in Sy, ...,S«k.

Predecessor(x): Binary search in S+ array + report predecessors.

Time. O(log n1 + K) = O(log n + k)
Space. O(nk)
Challenge. Can we get the best of both worlds?

Solution 3: Sorted Arrays with Bridges

S Ll L1 | | | Ll 1 | | | | | Ll |
1 i | I i1 1 I 1 1 1 | [|
S Pl e S e : 2 P :
S E e i Fo P - i i i
2 —1 1 JEE ! I E—— — T I !
P E i jie e : :
SS 1 1 1 1 1 1 1 1
S | |] | |
k-1 ! L B o .
P e
Sk | [1
0 X u-1
ISi=niandni+n2+ - +nk=n
[]

Time. O(log n1 + K) = O(log n + k)
Space. O(n)

Data structure. Sorted arrays for each set + bridges.

Predecessor(x): Binary search in S1 array + traverse bridges and report elements.

Predecessor in Nested Sets

- Theorem. We can solve the predecessor in nested sets problem in
« O(n) space.
* O(log n + k) query time.
« O(n log n) preprocessing time.

« Extensions.
* Predecessor = 1D range reporting.
« More tricks = works for non-nested sets. Called fractional cascading.

« Challenge. How can we use predecessor in nested sets for 2D range reporting?

2D Range Reporting

« Goal. 2D range reporting in O(n log n) space and O(log n) time
+ |dea. Consider node v with children viand v..
 Arrays at vi and vr are subsets of array at v.
+ All searches in arrays during a query are on the same y-range.

‘e *

2D Range Reporting

« Data structure. 2D range tree with bridges.

- Each point in array at v stores bridges to arrays in v and v..

Report(x1, y1, X2, y2): As 2D range tree query
« Binary search in root array + traverse bridges for remaining 1D queries.

Time. O(log n + occ)

Space. O(nlog n)

Preprocessing. O(nlog n)

‘e *

2D Range Reporting

« Theorem. We can solve the 2D range reporting problem in
« O(n log n) space
* O(log n + occ) time for queries.
« O(n log n) preprocessing time.

- What can we do with only linear space?

Range

_Reporting

* Range reporting problem

1D range reporting

- Range trees

2D range reporting

* Range trees

* Predecessor in nested sets

* kD trees

kKD Trees

« The 2D tree (k = 2).

« A balanced binary tree over point set P.

Recursively partition P into rectangular regions containing (roughly) same number
of points. Partition by alternating horizontal and vertical lines.

« Each node in tree stores region and line.

la 4 l6

de i®

° 8
=
N
3

l13

fe

n a bc def h i k I mn
Je °

Is

« Space. O(n)

« Preprocessing. O(n log n)

kKD Trees

* Report(x1, y1, X2, y2): Traverse 2D tree starting at the root. At node v:
- Case 1. vis a leaf: report the unique point in region(v) if contained in range.
« Case 2. region(v) is disjoint from range: stop.
« Case 3. region(v) is contained in range: report all points in region(v).
« Case 4. region(v) intersects range, and v is not a leaf. Recurse left and right.

la 4 l6

je

de i®

° 8
=
N
3

lo l13

feo
n a bc def h i k I mn
Je °

* Time. O(n'?)

kD trees

« Theorem. We can solve the 2D range reporting problem in
« O(n) space
- O(n'2 + occ) time
« O(n log n) preprocessing

2D Range Reporting

« Theorem. We can solve 2D range reporting in either
« O(n log n) space and O(log n + occ) query time
- O(n) space and O(n'2 + occ) query time.
« Extensions.
* More dimensions.
- Inserting and deleting points.
+ Using word RAM techniques.
- Other shapes (circles, triangles, etc.)

Range

_Reporting

« Range reporting problem

1D range reporting

- Range trees

« 2D range reporting

- Range trees

* Predecessor in nested sets

* kD trees

