
Weekplan: Lowest Common Ancestors and Range Minimum
Queries

Inge Li Gørtz

References and Reading

[1] The LCA problem revisited, M. A. Bender, M. Farach-Colton, Latin American Symposium 2000.

[2] Scribe notes from MIT

[3] Fast Algorithms for Finding Nearest Common Ancestors, D. Harel and R. E. Tarjan, SIAM J. Comput., 13(2),
338–355.

[4] Competitive Programmer’s Handbook, section 9.3, Antti Laaksonen.

We recommend reading [1], [2] and [4] in detail before the lecture. [3] provides background on LCA.

Exercises

1 Sparse table Show that we can find the results for all power-of-two intervals in O(n log n) time.

2 [w] RMQ Consider the array A= [3,4, 5,4, 5,4, 5,4, 3,2, 1,0, 1,0, 1,2, 3,4, 3,4, 3,2, 1,2, 3,2, 3,4, 5,6, 7,6].

2.1 Give the arrays A′ and B used for the sparse table in the two level ±1RMQ data structure. Use block size 3.

2.2 Construct the sparse table solution for A′.

2.3 How many different tabulation tables do we need to store (how many different describing sequences/normalized
blocks are there)?

3 Size of blocks In the ±1RMQ data structure we divided the array into blocks of length 1
2 log n. What happens

if we instead use a block size of

• log n

• 3
4 log n

4 Reduction between RMQ and LCA In the lecture we saw how to reduce RMQ to LCA via a Cartesian tree
and from LCA to RMQ.

4.1 Build the Cartesian tree T for the array A= [3, 5,1,3, 8,6, 9,2, 42,4, 7,12].

4.2 Reduce LCA on T to ±1RMQ. That is, construct the array for the ±1RMQ instance.

5 Distance Queries in Trees Let T be a unrooted tree in which each edge has an integer weight. The distance
between two nodes u and v is the sum of edge weights on the path between u and v. Give a linear-space data
structure for T that can report the distance between any pair of nodes in constant time.

6 [w] Segment tree Construct the RMQ segment tree for the array A= [4,2, 7,3, 5,1, 2,8, 9,8, 4,5, 3,6, 9,3].

1

7 Range Updates In the range update problem we want to preprocess an array A to efficiently support the
following operations:

• ADD(i, j, k): Add k to each of the entries A[i] . . . A[j].

• Lookup(i): Return the value A[i].

Give an efficient solution to solve the range update problem. Hint: Consider the difference array containing the
differences between adjacent positions in A.

8 Range Smallest and Range Uniqueness Let A be an array of length n. Consider the following queries:

• RS(i, j, t): return all integers ≤ t in A[i, j].

• RU(i, j): return the unique integers in A[i, j].

Solve the following exercises.

8.1 [w] Draw the array A[1,12] = [4,1, 3,2, 1,4, 4,3, 3,1, 2,5]. Show the result of RS(5,11, 3), and RU(5, 11).

8.2 Give a compact data structure that supports RS queries. Your query time should be output-sensitive.

8.3 Define the predecessor array P of A as the array P such that P[i] =max{1 ≤ j < i, A[j] = A[i]} ∪ {0}. Draw
the predecessor array P of example array from exercise 8.1.

8.4 [∗] Give a compact data structure that supports RU queries A. Your query time should be output-sensitive.
Hint: find a way to use the predecessor array.

2

