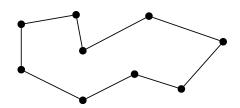
Traveling salesman problem

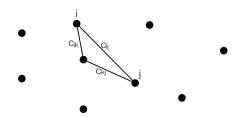
Inge Li Gørtz

Traveling Salesman Problem (TSP)



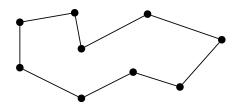
- Set of cities {1,...,n}
- $c_{ij} \ge 0$: cost of traveling from i to j.
- · cij a metric:
 - c_{ii} = 0
 - C_{ij} = C_{ji}
 - $C_{ij} \leq C_{ik} + C_{kj}$
- Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)



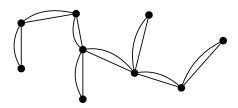
- Set of cities {1,...,n}
- c_{ij} ≥ 0: cost of traveling from i to j.
- · cii a metric:
 - $c_{ii} = 0$
 - C_{ij} = C_{ji}
 - $c_{ij} \le c_{ik} + c_{kj}$ (triangle inequality)
- Goal: Find a tour of minimum cost visiting every city exactly once.

Double tree algorithm



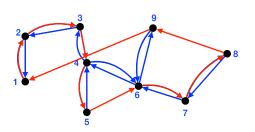
- · MST is a lower bound on TSP.
 - · Deleting an edge e from OPT gives a spanning tree.
 - OPT \geq OPT $c_e \geq$ MST.

Double tree algorithm



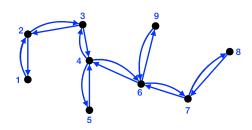
- · Double tree algorithm
 - · Compute MST T.
 - · Double edges of T
 - Construct Euler tour τ (a tour visiting every edge exactly once).

Double tree algorithm



- · Double tree algorithm
 - · Compute MST T.
 - · Double edges of T
 - Construct Euler tour τ (a tour visiting every edge exactly once).
 - Shortcut τ such that each vertex only visited once (τ')
- $length(\tau) \le length(\tau) = 2 cost(T) \le 2 OPT$.
- The double tree algorithm is a 2-approximation algorithm for TSP.

Double tree algorithm

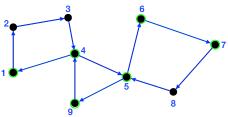


- · Double tree algorithm
 - · Compute MST T.
 - · Double edges of T
 - Construct Euler tour τ (a tour visiting every edge exactly once).

Christofides' algorithm

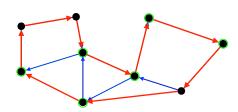
- · Christofides' algorithm
 - · Compute MST T.
 - · No need to double all edges:
 - Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges visiting every edge exactly once.
 - · G Eulerian iff G connected and all nodes have even degree.
 - · Consider set O of all odd degree vertices in T.
 - · Find minimum cost perfect matching M on O.
 - · Matching: no edges share an endpoint.
 - · Perfect: all vertices matched.
 - Perfect matching on O exists: Number of odd vertices in a graph is even.
 - T + M is Eulerian (all vertices have even degree).

Christofides' algorithm



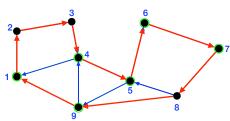
- · Christofides' algorithm
 - · Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour τ
 - Shortcut such that each vertex only visited once (τ')

Christofides' algorithm



- · Christofides' algorithm
 - · Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour T
 - Shortcut such that each vertex only visited once (τ)
- $length(\tau') \le length(\tau) = cost(T) + cost(M) \le OPT + cost(M)$.

Christofides' algorithm



- · Christofides' algorithm
 - · Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour τ
 - Shortcut such that each vertex only visited once (τ')

Analysis of Christofides' algorithm

- $cost(M) \le OPT/2$.
 - OPT_o = OPT restricted to O.
 - OPT₀ ≤ OPT.

Analysis of Christofides' algorithm

- $cost(M) \le OPT/2$.
 - OPT_o = OPT restricted to O.
 - OPT_o ≤ OPT.

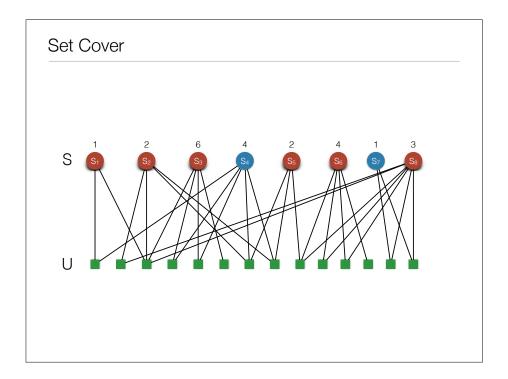
Set cover

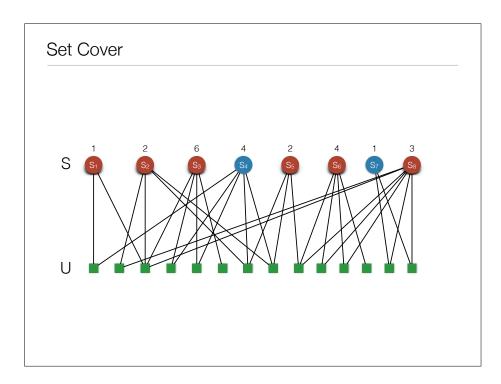
Analysis of Christofides' algorithm

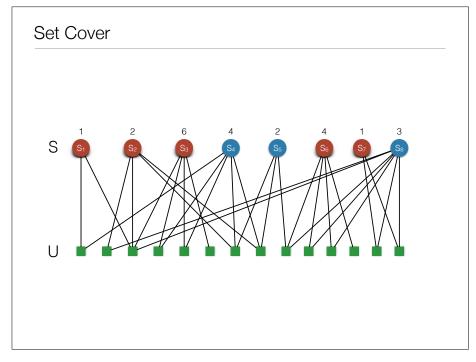
- cost(M) ≤ OPT/2:
 - $OPT_o = OPT$ restricted to O.
 - OPT₀ ≤ OPT.
 - can partition OPTo into two perfect matchings O1 and O2.
 - $cost(M) \le min(cost(O_1), cost(O_2)) \le OPT/2$.
- length(τ ') \leq length(τ) = cost(T) + cost(M) \leq OPT + OPT/2 = 3/2 OPT.
- Christofides' algorithm is a 3/2-approximation algorithm for TSP.

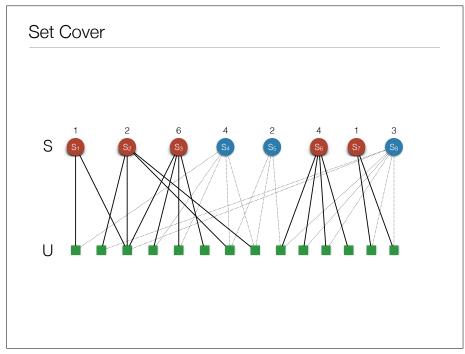
Set cover problem

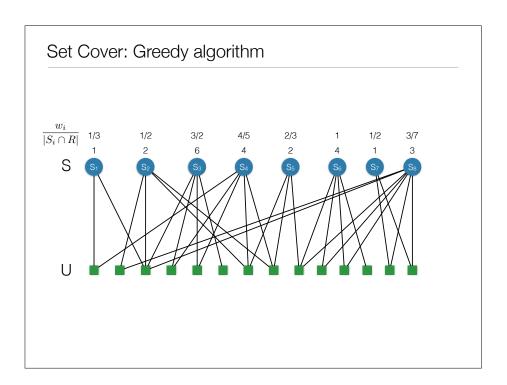
- · Set U of n elements.
- Subsets of U: S₁,...,S_m.
- Each set S_i has a weight $w_i \ge 0$.
- Set cover. A collection of subsets C whose union is equal to U.
- · Goal. find set cover of minimum weight.

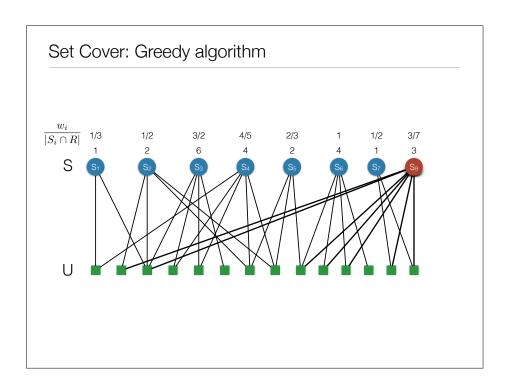


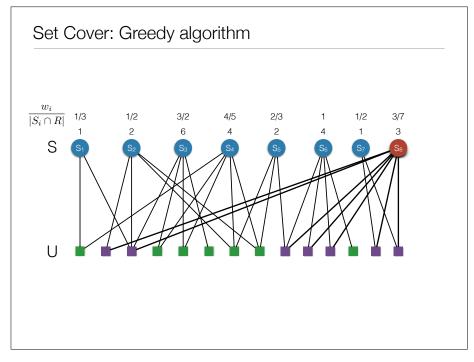


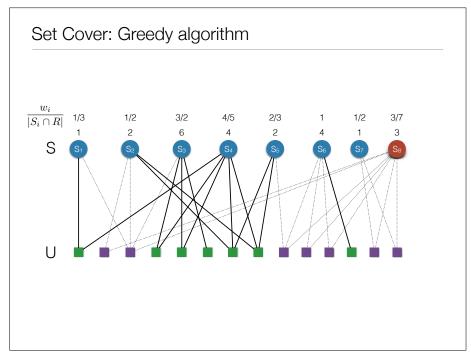


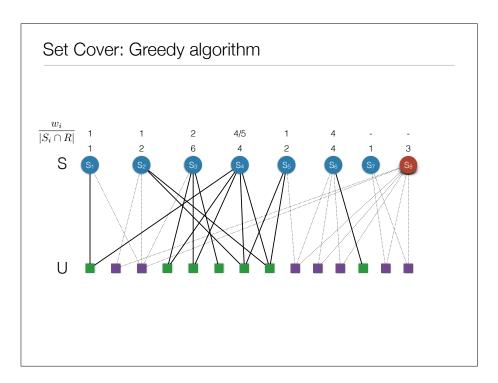


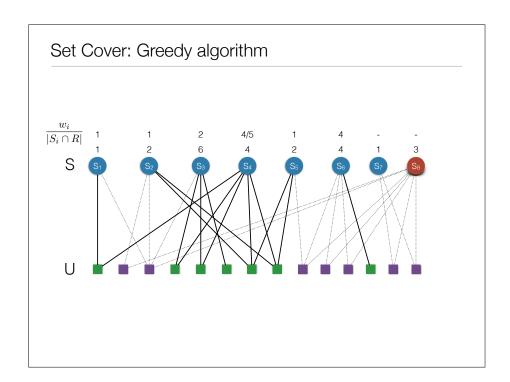


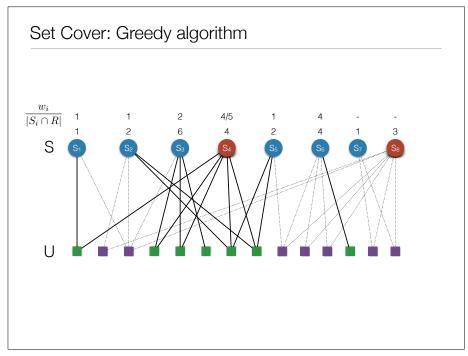


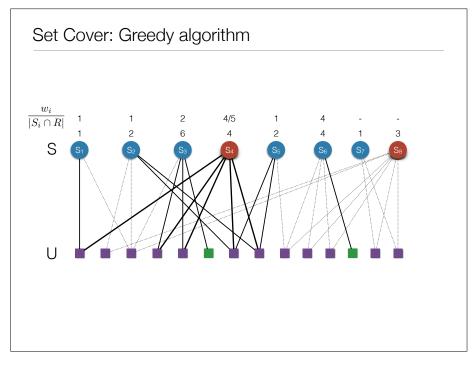


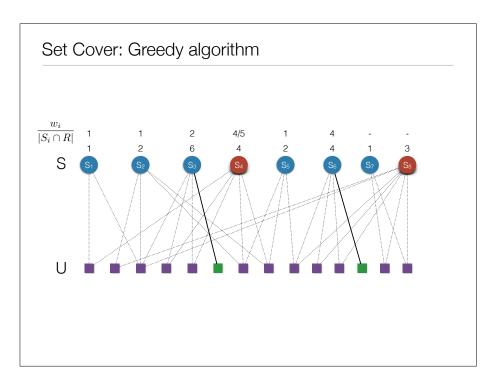


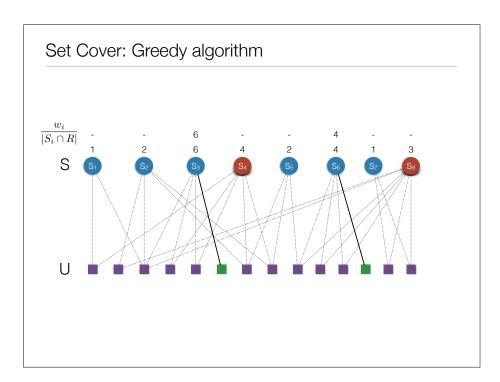


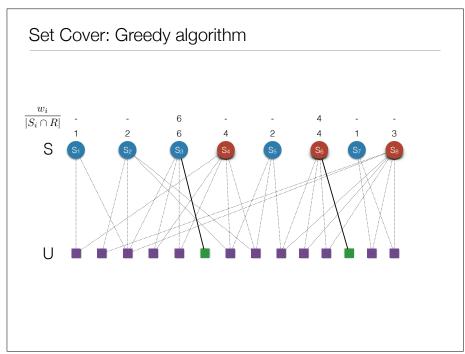


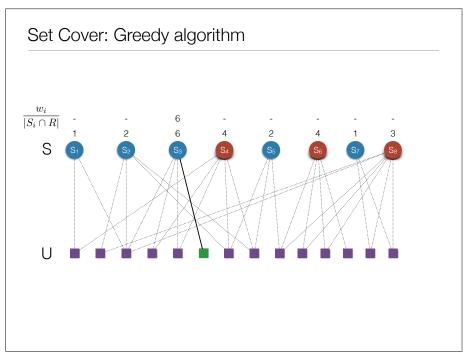


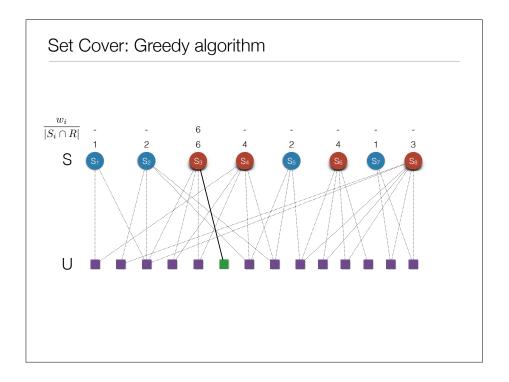


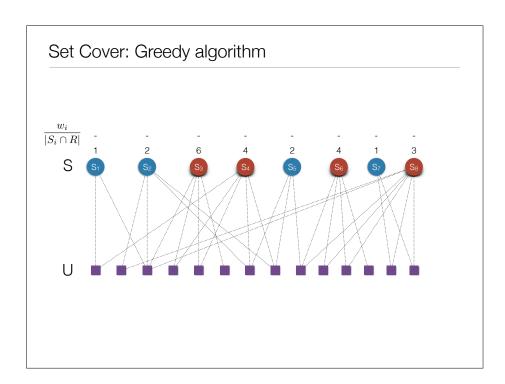












Set cover: greedy algorithm

Greedy-set-cover

Set R := U and $C := \emptyset$

while $R \neq \emptyset$

Select the set S_i minimizing $\frac{w_i}{|S_i \cap R|}$

Delete the elements from S_i from R.

Add Si to C.

endwhile

Return C.

- Greedy-set-cover is a n O(log n)-approximation algorithm:
 - polynomial time
 - valid solution 🗸
 - factor O(log n)

