Traveling salesman problem

Inge Li Gortz

Traveling Salesman Problem (TSP)

(@)
.y

Set of cities {1,...,n}

+ cj = 0: cost of traveling from i to j.

* cij a metric:
*ci=0
* Cij = Giji

* Cj<Cik+Ck (triangle inequality)
+ Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)

« Set of cities {1,...,n}
* cjj = 0: cost of traveling from i to j.

* cjj a metric:
*ci=0
* Cij=Gij

* Cjj < Cik + Ckj

» Goal: Find a tour of minimum cost visiting every city exactly once.

Double tree algorithm

» MST is a lower bound on TSP.
+ Deleting an edge e from OPT gives a spanning tree.
* OPT = OPT - ce= MST.

Double tree algorithm

« Double tree algorithm
+ Compute MSTT.
» Double edges of T

+ Construct Euler tour T (a tour visiting every edge exactly once).

Double tree algorithm

+ Double tree algorithm
« Compute MST T.
+ Double edges of T

+ Construct Euler tour T (a tour visiting every edge exactly once).

Double tree algorithm

» Double tree algorithm
+ Compute MST T.
» Double edges of T

« Construct Euler tour T (a tour visiting every edge exactly once).

+ Shortcut T such that each vertex only visited once (t’)
« length(t’) < length(t) = 2 cost(T) < 2 OPT.

» The double tree algorithm is a 2-approximation algorithm for TSP.

Christofides’ algorithm

« Christofides’ algorithm
« Compute MST T.
» No need to double all edges:

+ Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges
visiting every edge exactly once.

+ G Eulerian iff G connected and all nodes have even degree.
+ Consider set O of all odd degree vertices in T.
+ Find minimum cost perfect matching M on O.
+ Matching: no edges share an endpoint.
« Perfect: all vertices matched.
« Perfect matching on O exists: Number of odd vertices in a graph is even.

» T+ Mis Eulerian (all vertices have even degree).

Christofides’ algorithm

« Christofides’ algorithm
+ Compute MSTT.
+ O = {odd degree vertices in T}.
+ Compute minimum cost perfect matching |/ on O.

« Construct Euler tour ©

+ Shortcut such that each vertex only visited once (T’)

Christofides’ algorithm

+ Christofides’ algorithm
« Compute MST T.
+ O = {odd degree vertices in T}.
+ Compute minimum cost perfect matching I/ on O.

+ Construct Euler tour ©

+ Shortcut such that each vertex only visited once (')

Christofides’ algorithm

~,
/

™S

« Christofides’ algorithm
+ Compute MST T.
» O = {odd degree vertices in T}.
+ Compute minimum cost perfect matching M on O.

+ Construct Euler tour t
« Shortcut such that each vertex only visited once (t’)

« length(t’) < length(t) = cost(T) + cost(M) < OPT + cost(M).

Analysis of Christofides’ algorithm

+ cost(M) < OPT/2.
* OPT, = OPT restricted to O.
+ OPT, < OPT.

Analysis of Christofides’ algorithm

» cost(M) < OPT/2.
+ OPT, = OPT restricted to O.
+ OPT, < OPT.

Analysis of Christofides’ algorithm

+ cost(M) < OPT/2:
* OPT, = OPT restricted to O.
+ OPT, < OPT.
+ can partition OPT, into two perfect matchings O+ and Oo.
+ cost(M) < min(cost(O1), cost(Oz)) < OPT/2.
+ length(t’) < length(t) = cost(T) + cost(M) < OPT + OPT/2 = 3/2 OPT.

« Christofides’ algorithm is a 3/2-approximation algorithm for TSP.

Set cover

Set cover problem

+ Set U of n elements.

» Subsets of U: St,...,Sm.

+ Each set Si has a weight wi> 0.

+ Set cover. A collection of subsets C whose union is equal to U.
+ Goal. find set cover of minimum weight.

Set Cover

Set Cover

Set Cover

Set Cover

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Us o & § s s s s 0 s i B &

Set cover: greedy algorithm

Greedy-set-cover
SetR:=Uand C:=0
while R = @
A (L
Select the set S; minimizing 1S, R

Delete the elements from S; from R.
Add S;to C.

endwhile

Return C.

» Greedy-set-cover is a n O(log n)-approximation algorithm:
» polynomial time v
+ valid solution v~

» factor O(log n)

Set Cover: Greedy algorithm - tight example

Set Cover: Greedy algorithm - tight example

OPT = 1+x

Set Cover: Greedy algorithm - tight example

w;

m 1/n 1/(n-1)1/(n-2) 1 ((H9)(n-2)
Cost 1/ 1n-D1/(N-2) . 1 14X
S

OPT = 1+x
Greedy = 1/n+ 1/(n-1) + 1/(n-2) =H¢

