Approximation Algorithms

02282 Inge Li Gørtz

Examples

- Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of edges from E such that the resulting graph is acyclic.
 - Give a 1/2-approximation algorithm for this problem.

Minimum Maximal Matching

- A matching in a graph G=(V,E) is a subset of edges M ⊆ E, such that no two
 edges in M share an endpoint.
- A maximal matching is a matching that cannot be extended, i.e., it is not
 possible to add an edge from E \ M to M without violating the constraint.
- Design a 2-approximation algorithm for finding a minimum cardinality maximal matching in an undirected graph.

Approximation algorithms

- · Fast. Cheap. Reliable. Choose two.
- · NP-hard problems: choose 2 of
 - optimal
 - · polynomial time
 - · all instances
- Approximation algorithms. Trade-off between time and quality.
- Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an aapproximation algorithm if for any instance I of the optimization problem:
 - · A runs in polynomial time
 - · A returns a valid solution
 - A(I) $\leq \alpha \cdot OPT$, where $\alpha \geq 1$, for minimization problems
 - A(I) $\geq \alpha \cdot OPT$, where $\alpha \leq 1$, for maximization problems

Examples

- Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of edges from E such that the resulting graph is acyclic.
 - Give a 1/2-approximation algorithm for this problem.
 - · Lower bound what is the best we can hope for?
 - Arbitrarily number the vertices and pick the bigger of the two sets, the forward going edges and the backward going edges.

· Minimum Maximal Matching

- A matching in a graph G=(V,E) is a subset of edges M \subseteq E, such that no two edges in M share an endpoint.
- A maximal matching is a matching that cannot be extended, i.e., it is not
 possible to add an edge from E\setminus M to M without violating the constraint.
- Design a 2-approximation algorithm for finding a minimum cardinality maximal matching in an undirected graph.
- Lower bound: Any maximal matching is at least half the maximum maximal matching. Why?

Load balancing

Simple greedy (list scheduling)

Approximation factor

- Lower bounds:
 - · Each job must be processed:

$$T^* \ge \max_i t_j$$

• There is a machine that is assigned at least average load:

$$T^* \ge \frac{1}{m} \sum_j t_j$$

Simple greedy (list scheduling)

Approximation factor

- · i: job finishes last.
- All other machines busy until start time s of i. ($s = T_i t_i$)
- · Partition schedule into before and after s.
- After ≤ T*.
- · Before:
- All machines busy => total amount of work = m·s:

$$m \cdot s \le \sum_{j} t_{j}$$
 $\Rightarrow s \le \frac{1}{m} \sum_{j} t_{j} \le T^{*}$

• Length of schedule = $s + t_i \le T^* + T^* = 2T^*$.

Longest processing time rule

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- LPT is a is a 3/2-approximation algorithm:
 - polynomial time ✓
 - valid solution ✓
 - factor 3/2

Longest processing time rule: factor 4/3

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $t_1 \ge \ge t_n$.
- · Assume wlog that smallest job finishes last.
- If $t_n \le T^*/3$ then $T \le 4/3 T^*$.
- If $t_n > T^*/3$ then each machine can process at most 2 jobs in OPT.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.
- Theorem. LPT is a 4/3-approximation algorithm.

Longest processing time rule: factor 3/2

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $t_1 \ge \ge t_n$.
- If $n \le m$ then optimal.
- Lower bound: If n > m then $T^* \ge 2t_{m+1}$.
- Factor 3/2:
 - Before ≤ T*
 - · After: i job that finishes last.
 - $t_i \le t_{m+1} \le T^*/2$.
 - $T \le T^* + T^*/2 \le 3/2 T^*$.
- Tight?

k-center

The k-center problem

- Input. An integer k and a set of sites S with distance d(i,j) between each pair of sites $i,j \in S$.
- · d is a metric:
 - dist(i,i) = 0
 - dist(i,j) = dist(j,i)
 - $dist(i,l) \leq dist(i,j) + dist(j,l)$
- Goal. Choose a set C ⊆ S , |C| = k, of k centers so as to minimize the maximum distance of a site to its closest center.

$$C = \operatorname{argmin}_{C \subseteq V, |C| = k} \operatorname{max}_{i \in V} \operatorname{dist}(i, C)$$

• Covering radius. Maximum distance of a site to its closest center.

k-center analysis: optimal clusters

· Optimal clusters: each vertex assigned to its closest optimal center.

k-center: Greedy algorithm

- · Greedy algorithm.
 - Pick arbitrary i in S.
 - Set C = {i}
 - while |C| < k do
 - Find vertex j farthest away from any cluster center in C
 - Add j to C
 - Return C

- · Greedy is a 2-approximation algorithm:
 - polynomial time ✓
 - valid solution ✓
 - factor 2

k-center analysis

- r* optimal radius.
- Claim: Two vertices in same optimal cluster has distance at most 2r* to each other.

k-center

Bottleneck algorithm

- · Assume we know the optimum covering radius r.
- · Bottleneck algorithm.
 - Set R := S and $C := \emptyset$.
 - while R ≠ Ø do
 - · Pick arbitrary i in R.
 - Add j to C
 - Remove all vertices with $d(j,v) \le 2r$ from R.
 - · Return C
- Example: k= 3. r = 4.

k-center: analysis greedy algorithm

- r* optimal radius.
- Show all vertices within distance 2r* from a center.
- · Consider optimal clusters. 2 cases.
 - 1. Algorithm picked one center in each optimal cluster
 - distance from any vertex to its closest center ≤ 2r*.

- 2. Some optimal cluster does not have a center.
- · Some cluster have more than one center.
- Distance between these two centers $\leq 2r^*$.
- When second center in same cluster picked it was the vertex farthest away from any center.
- Distance from any vertex to its closest center at most 2r*.

Analysis bottleneck algorithm

- r* optimal radius.
- Covering radius is at most $2r = 2r^*$.
- Show that we cannot pick more than k centers:
 - · We can pick at most one in each optimal cluster:
 - Distance between two nodes in same optimal cluster ≤ 2r.*
 - When we pick a center in a optimal cluster all nodes in same optimal cluster is removed.

Analysis bottleneck algorithm

- r* optimal radius.
- Can use algorithm to "guess" r* (at most n² values).
- If algorithm picked more than k centers then $r^* > r$.
 - If algorithm picked more than k centers then it picked more than one in some optimal cluster.
 - Distance between two nodes in same optimal cluster ≤ 2r.*
 - If more than one in some optimal cluster then 2r < 2r*.

