Level Ancestor

Philip Bille/Inge Li Gørtz

Level Ancestor

- Level ancestor problem. Preprocess rooted tree T with n nodes to support
- LA(v,k): return the kth ancestor of node v .

Level Ancestor

- Applications.
- Basic primitive for navigating trees (any hierarchical data).
- Illustration of wealth of techniques for trees.
- Path decompositions.
- Tree decomposition.
- Tree encoding and tabulation.

Level Ancestor

- Goal. Linear space and constant time.
- Solution in 7 steps (!).
- No data structure. Very slow, litte space
- Direct shortcuts. Very fast, lot of space.
-
- Ladder decomposition + jump pointers + top-bottom decomposition. Very fast, little space.

Solution 1: No Data Structure

- Data structure. Store tree T (using pointers).
- LA(v,k): Walk up.
- Time. O(n)
- Space. O(n)

Solution 2: Direct Shortcuts

- Data structure. Store each root-to-leaf in array.
- LA(v,k): Jump up.
- Time. O(1)
- Space. O(n^{2})

Solution 3: Jump Pointers

- Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..
- LA(v,k): Jump to most distant ancestor no further away than k. Repeat.
- Time. O(log n)
- Space. O(n log n)

Solution 4: Long Path Decomposition

- Long path decomposition.
- Find root-to-leaf path p of maximum length.
- Recursively apply to subtrees hanging of p.
- Lemma. Any root-to-leaf path passes through at most $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$ long paths.
- Longest paths partition $\mathrm{T} \Longrightarrow$ total length of all longest paths is $<\mathrm{n}$

Solution 4: Long Path Decomposition

- Data structure. Store each long path in array.
- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O($\left.\mathrm{n}^{1 / 2}\right)$
- Space. O(n)

Solution 5: Ladder Decomposition

- Ladder decomposition.
- Compute long path decomposition.
- Double each long path.
- Lemma. Any root-to-leaf path passes through at most O(log n) ladders.
- Total length of ladders is $<2 n$.

Solution 5: Ladder Decomposition

- Data structure.
- Store each ladder in array.
- Each node points to ladder corresponding to its longest path.
- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
- Time. O(log n)
- Space. O(n)

Solution 6: Ladder Decomposition + Jump Pointers

- Data structure. Ladder decomposition + Jump pointers.
- LA(v, k):
- Jump to most distant ancestor not further away than k using jump pointer.
- Jump to kth ancestor using ladder.
- Time. O(1)
- Space. $O(n)+O(n \log n)=O(n \log n)$

Solution 6: Ladder Decomposition + Jump Pointers

- Correctness.
- A node at height x is on a ladder of height at least $2 x$.
- After jump we are at a node of height at least k/2.
- => after jump we are at a ladder that contains our goal.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with $\geq 1 / 4 \log n$ descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with $\geq 1 / 4 \log n$ descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with $\geq 1 / 4 \log n$ descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with $\geq 1 / 4 \log n$ descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.
- Size of each bottom tree $<1 / 4 \log n$.
- Number of jump nodes is at most $\mathrm{O}(\mathrm{n} / \log \mathrm{n})$.

Solution 7: Top-Bottom Decomposition

- Data structure for top.
- Ladder decomposition + Jump pointers for jump nodes.
- For each internal node pointer to some jump node below.
- LA(v,k) in top:
- Follow pointer to jump node below v.
- Jump pointer + ladder solution.
- Time. O(1)
- Space. $O(n)+(n / \log n \cdot \log n)=O(n)$

Solution 7: Top-Bottom Decomposition

(0) ((0)) (00)

- Tree encoding. Encode each bottom tree B using balanced parentheses representation.
- <2 $\cdot 1 / 4 \log n=1 / 2 \log n$ bits.
- Integer encoding. Encode inputs v and k to LA
- <2 $\cdot \log (1 / 4 \log n)<2 \log \log n$ bits.
- LA encoding. Concatenate into code($\mathrm{B}, \mathrm{v}, \mathrm{k}$)
- $\Longrightarrow|\operatorname{code}(B, v, k)|<1 / 2 \log n+2 \log \log n$ bits.

Solution 7: Top-Bottom Decomposition

- Data structure for bottom.
- Build table A s.t. $A[\operatorname{code}(B, v, k)]=L A(v, k)$ in bottom tree B.
- LA(v,k) in bottom: Lookup in A.
- Time. O(1)
- Space. $2^{\mid \text {code }}<2^{1 / 2 \log n+2 \log \log n}=n^{1 / 2} \log ^{2} n=o(n)$.
- Combine bottom and top data structures $\Longrightarrow O(n)$ space and $O(1)$ query time.

Solution 7: Top-Bottom Decomposition

- Theorem. We can solve the level ancestor problem in linear space and constant query time.

