Weekplan: Lowest Common Ancestors and Range Minimum
Queries

Inge Li Ggrtz

References and Reading
[1] The LCA problem revisited, M. A. Bender, M. Farach-Colton, Latin American Symposium 2000.
[2] Scribe notes from MIT

[3] Fast Algorithms for Finding Nearest Common Ancestors, D. Harel and R. E. Tarjan, SIAM J. Comput., 13(2),
338-355.

We recommend reading [1] and [2] in detail before the lecture. [3] provides background on LCA. In the pretest
(see DTU Learn) you can check if you understand the basics before the lecture. The pretest is an absolute minimum
for what you should know before the lecture.

Exercises

1 Sparse table Show that any interval is the union of two power-of-two intervals.
Show that we can find all power-of-two intervals in O(nlogn) time.

2 [w]RMQ Consider the array A=[3,4,5,4,5,4,5,4,3,2,1,0,1,0,1,2,3,4,3,4,3,2,1,2,3,2,3,4,5,6,7,6].
2.1 Give the arrays A’ and B used for the sparse table in the two level £1RMQ data structure.
2.2 Write down the normalized blocks.

2.3 Write down the tabulation solution (2-dimensional array) for first, second and second last of the normalized
blocks.

2.4 Show how the query RMQ(3, 29), RMQ(2,5), and RMQ(7,8) is performed (you do not have to construct the
sparse array data structure for A, but explain which intervals that are used in the queries).

3 Size of blocks In the RMQ data structure we divided the array into blocks of length %log n. What happens
if we instead use a block size of

e logn

. %logn
4 Range X Queries We saw how to support range minimum queries on an array A of n elements in linear space
and constant time. For which of the following queries can we use the same approach?

e Range Maximum Queries

e Range Sum Queries

e Range Median Queries

Try to explain when we can use the techniques from the RMQ data structure on a problem.



5 Reduction between RMQ and LCA In the lecture we saw how to reduce RMQ to LCA via a Cartesian tree
and from LCA to RMQ.

5.1 Build the Cartesian tree T for the array A=(3,5,1,3,8,6,9,2,42,4,7,12].
5.2 Reduce LCA on T to £1RMQ. That is, construct the array for the £1RMQ instance.
6 Distance Queries in Trees Let T be a unrooted tree in which each edge has an integer weight. The distance

between two nodes u and v is the sum of edge weights on the path between u and v. Give a linear-space data
structure for T that can report the distance between any pair of nodes in constant time.

7 First Covering Ancestor Let T be a rooted tree with n nodes. We say that T is labeled if each leaf is associated
with a label from a set of labels L = {0,...,l — 1}. Given a node v € T, the subtree rooted at v, denoted T(v), is
the tree consisting of v and all descendants of v. A node v € T covers a label £ if T(v) contains a leaf labeled £.
Given a leaf v € T and a label £ € L, a first covering ancestor query is defined as follows.

e FCA(v, £): return the deepest ancestor a of v such that a covers £.

Given a labeled tree T, the first covering ancestor problem is to preprocess T into a compact data structure that
supports first covering ancestor queries.

Give a linear-space data structure for the first covering ancestor problem that supports fast FCA queries.

8 Cartesian Trees Give an efficient algorithm for constructing the Cartesian tree of an array with n elements.



