Range Minimum Queries and
Lowest Common Ancestor

Inge Li Gortz

Range Minimum Queries and Lowest Common Ancestor

» Range Minimum Queries (RMQ) and Lowest Common Ancestor (LCA)
+ RMQ

+ Simple solutions

+ Better solution

+ 2-level solution
» Reduction between RMQ and LCA

Range Minimum Queries

» Range minimum query problem. Preprocess array A[1...n] of integers to support
+ RMQ(i,j): return the (entry of) minimum element in Ali...j].

1[2]13[4]15]6]7[8]9 (10
1711218 12]|5[1[4([8]83

- RMQ@,6) = 2 (index 5)

+ Basic (extreme) solutions
* Linear search:
« Space: O(n). Only keep array (no extra space)
+ Time: O(j-i) = O(n)
+ Save all possible answers: Precompute and save all answers in a table.
« Space: O(n?) pairs => O(n?) space
« Time: O(1)

Lowest Common Ancestor

» Lowest common ancestor problem. Preprocess rooted tree T with n nodes to
support

* LCA(u,v): return the lowest common ancestor of u and v.

\

LCA(u,v) =a

Lowest Common Ancestor RMQ and LCA

» Outline.
+ Can solve both RMQ and LCA in linear space and constant time.
« First solution to RMQ
+ Solution t al f RMQ.
. Time: O(depth of tree) = O(n) Solution to a special case o Q
. . + See that RMQ and LCA are equivalent (can reduce one to the other both
+ Save all possible answers: Precompute and save all answers in a table. ways).

+ Basic (extreme) solutions
+ Linear search: Follow paths to root and mark when you visit a node.

« Space: O(n). Only keep tree (no extra space)

« Space: O(n?) pairs => O(n2) space
« Time: O(1)

RMQ: Sparse table solution

+ Save the result for all intervals of length a power of 2.

RMQ

e e

t it it it it it it 1t it it it it A ————
f m m m m m m m |

RMQ: Sparse table solution

+ For all positions we have all power of 2 length intervals starting at that position.

e

| |
_
_

» Space: O(n log n)

RMQ: Sparse table solution

+ Query:
X Yy
— ——
l

+ Any interval the union of two power of 2 intervals.
* Query the two intervals and take minimum
» Time: O(1)

RMQ: Linear space

+ Consider +1RMQ: consecutive entries differ by at most 1.

112]13[4(5[|6]7]|8]9([10[{11]12]13
4[(5[6]15]14|3[2[3]2]|3]|4([5]4

+ 2-level solution: Combine
+ O(n log n) space, O(1) time
+ O(n2?) space, O(1) time.
4
+ O(n) space, O(1) time.

+1RMQ

1
- Divide A into blocks of size 5 logn

+1RMQ

1
+ Divide A into blocks of size Elogn

i j
[——; L |

1
~logn
2

+ 2-level data structure:
+ Sparse table on blocks

+ Tabulation inside blocks.

+ RMQ(x,y) = min{ RMQ on blocks i to j,
RMQ inside block i-1,
RMQ inside block j+1 }.

+1RMQ: Data structure on blocks

T w—————

1
=
7 logn

» Two new arrays.
« Array A’: minimum from each block B e an
+ B: position in A where A’[i] occurs.

» Sparse table data structure on A'.

+ Space: O(A| log |A’]) = O(n).

» Time: O(1)

+1RMQ: Data structure inside blocks

T ee———

Ly
5 logn

] H nmm
» Precompute and save all answers for each block. | FH

I

+ Gives solution using

+ Space: O(n) + space for precomputed tables. Em

« Time: O(1) + O(1) + O() = O().

/ f \

2 table sparse min{s,+,+}
lookups table

+1RMQ: Storing the tables

+ Naively: log2 n for each table => n log n space. @

+ Observation: If X[i] = Y[i] + ¢ then all RMQ answers are the same for X and Y.
+ X=[7,6,5,6,5,4]
*Y=[3,21,210]

* Normalize blocks:
« X=[0,-1,-2,-1,-2,-3]=Y

» Normalized block described by sequence of +1s and -1s:
+ X=Y=-1,-1,+1,-1,-1.

+ How many different normalized blocks are there?

1
+ length of sequence = 3 logn—1

- #sequences = 23t </

+1RMQ: Data structure inside blocks

» Precompute and save all answers for each normalized block.
+ Size of a table: O(log2 n)

+ For each block save which precomputed table it uses.

N LCA and RMQ

+ Space: O(\/ﬁ -log?n) + O(n/logn) = O(n)

» Plugging into 2-level solution:

+ Space: O(n) + space for precomputed tables = O(n).

RMQ and LCA RMQ to LCA

+ We will show
* RMQ reduces to LCA reduces to +1RMQ 112101415101 71819 110
117|112 8[2]|5|1]4|8]|3
If there is a solution to LCA If there is a solution to x1RMQ
using s(n) space and t(n) time, using s(n) space and t(n) time,
then there is a solution to RMQ then there is a solution to LCA
using O(s(n)) space and O(t(n)) using O(s(n)) space and O(t(n))

time. time.

RMQ to LCA

+ Cartesian tree.

- RMQ(3,6) = LCA(3,6)

LCA to +1RMQ

cE= 1]12)3]415]|6[7|8[9[10]11]12)13]|14]15[16]17
“li]2]s[24als]els|7]5]4[2]s]2]1]o]1
cA= 112[3[4]5]6]718]9|10]11]12[13[14[15]16]17
ojt1)2]1[2|3[4|3]4[3]2]1]2]1]0f[1][O

E: Euler tour representation: preorder walk, write node preorder number of node
when met.

A: depth of node node in E[i].
R: first occurrence in E of node with preorder number i
LCA(i, j) = EIRMQA(RI, ROD)-

+ LCA(5,8) = RMQa(6, 13).

“E= [112]3[4]s]6][7[] o [io]11]12]15]14]15]16]17]
! [

1]2[s]2]4]s]6]s]7]s] 4@ s]2]1]a]1]

. A_|1|2|3|4|5|6|7|8|9|10|11 12[13]14] 15[16]17]
|

o[1[2]1]2]sla]s]4]s]2 2] 1{o]1]o]

E: Euler tour representation: preorder walk, write node preorder number of node
when met.

A: depth of node node in E[i].
R: first occurrence in E of node with preorder number i
LCA(;, j) = EIRMQa(RI], RGDI-

RMQ and LCA

» Theorem. RMQ and LCA can be solved in O(n) space and O(1) query time.

