
Range Minimum Queries and
Lowest Common Ancestor
Inge Li Gørtz

• Range Minimum Queries (RMQ) and Lowest Common Ancestor (LCA)

• RMQ

• Simple solutions

• Better solution

• 2-level solution

• Reduction between RMQ and LCA

Range Minimum Queries and Lowest Common Ancestor

• Range minimum query problem. Preprocess array A[1…n] of integers to support

• RMQ(i,j): return the (entry of) minimum element in A[i…j].

• RMQ(3,6) = ?

• Basic (extreme) solutions

• Linear search:

• Space: O(n). Only keep array (no extra space)

• Time: O(j-i) = O(n)

• Save all possible answers: Precompute and save all answers in a table.

• Space: O(n2) pairs => O(n2) space

• Time: O(1)

Range Minimum Queries

1 2 3 4 5 6 7 8 9 10
1 7 12 8 2 5 1 4 8 3

 2 (index 5)

• Lowest common ancestor problem. Preprocess rooted tree T with n nodes to
support

• LCA(u,v): return the lowest common ancestor of u and v.

Lowest Common Ancestor

LCA(u,v) = a

v
u

a

• Basic (extreme) solutions

• Linear search: Follow paths to root and mark when you visit a node.

• Space: O(n). Only keep tree (no extra space)

• Time: O(depth of tree) = O(n)

• Save all possible answers: Precompute and save all answers in a table.

• Space: O(n2) pairs => O(n2) space

• Time: O(1)

Lowest Common Ancestor
• Outline.

• Can solve both RMQ and LCA in linear space and constant time.

• First solution to RMQ

• Solution to a special case of RMQ.

• See that RMQ and LCA are equivalent (can reduce one to the other both

ways).

RMQ and LCA

RMQ
• Save the result for all intervals of length a power of 2.

RMQ: Sparse table solution

• For all positions we have all power of 2 length intervals starting at that position.

• Space: O(n log n)

RMQ: Sparse table solution
• Query:

• Any interval the union of two power of 2 intervals.

• Query the two intervals and take minimum

• Time: O(1)

RMQ: Sparse table solution

x y

ll

• Consider ±1RMQ: consecutive entries differ by at most 1.

• 2-level solution: Combine

• O(n log n) space, O(1) time

• O(n2) space, O(1) time.

• O(n) space, O(1) time.

RMQ: Linear space

1 2 3 4 5 6 7 8 9 10 11 12 13
4 5 6 5 4 3 2 3 2 3 4 5 4

⇒

• Divide A into blocks of size

 ±1RMQ
1
2

log n

︸12 log n

x y

• Divide A into blocks of size

• 2-level data structure:

• Sparse table on blocks

• Tabulation inside blocks.

• RMQ(x,y) = min{ RMQ on blocks i to j,

 RMQ inside block i-1,

 RMQ inside block j+1 }.

 ±1RMQ
1
2

log n

︸12 log n

x y

i j

• Two new arrays.

• Array A’: minimum from each block

• B: position in A where A’[i] occurs.

• Sparse table data structure on A’.

• Space: O(|A’| log |A’|) = O(n).

• Time: O(1)

 ±1RMQ: Data structure on blocks

block number
min of block

︸12 log n

x y

• Precompute and save all answers for each block.

• Gives solution using

• Space: O(n) + space for precomputed tables.

• Time: O(1) + O(1) + O(1) = O(1).

 ±1RMQ: Data structure inside blocks

2 table
lookups

sparse
table

min{⋅,⋅,⋅}

︸12 log n

x y

• Naively: log2 n for each table => n log n space. 😕

• Observation: If X[i] = Y[i] + c then all RMQ answers are the same for X and Y.

• X = [7, 6, 5, 6, 5, 4]

• Y = [3, 2, 1, 2, 1, 0]

• Normalize blocks:

• X = [0, -1, -2, -1, -2, -3] = Y

• Normalized block described by sequence of +1s and -1s:

• X = Y = -1, -1, +1, -1, -1.

• How many different normalized blocks are there?

• length of sequence =

• #sequences =

 ±1RMQ: Storing the tables

1
2

log n − 1

2 1
2 log n−1 ≤ n .

• Precompute and save all answers for each normalized block.

• Size of a table: O(log2 n)

• For each block save which precomputed table it uses.

• Space:

• Plugging into 2-level solution:

• Space: O(n) + space for precomputed tables = O(n).

 ±1RMQ: Data structure inside blocks

︸12 log n

O(n ⋅ log2 n) + O(n /log n) = O(n)

LCA and RMQ

• We will show

• RMQ LCA ±1RMQ

RMQ and LCA

reduces to reduces to

If there is a solution to LCA
using s(n) space and t(n) time,

then there is a solution to RMQ
using O(s(n)) space and O(t(n))
time.

If there is a solution to ±1RMQ
using s(n) space and t(n) time,

then there is a solution to LCA
using O(s(n)) space and O(t(n))
time.

• Cartesian tree.

RMQ to LCA

1 2 3 4 5 6 7 8 9 10
1 7 12 8 2 5 1 4 8 3

71

11

52

27

48

312

65

103

84

98

• Cartesian tree.

• RMQ(3,6) = LCA(3,6)

RMQ to LCA

1 2 3 4 5 6 7 8 9 10
1 7 12 8 2 5 1 4 8 3

71

11

52

27

48

312

65

103

84

98

LCA to ±1RMQ

• E: Euler tour representation: preorder walk, write node preorder number of node
when met.

• A: depth of node node in E[i].

• R: first occurrence in E of node with preorder number i

• LCA(i, j) = E[RMQA(R[i], R[j])].

9

1

2

4

5

76

83

0

1
1

2
2

2

3

4 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 2 4 5 6 5 7 5 4 2 8 2 1 9 1

• E =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 2 1 2 3 4 3 4 3 2 1 2 1 0 1 0

• A =

1 2 3 4 5 6 7 8 9
1 2 3 5 6 7 9 13 16

• R =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 2 4 5 6 5 7 5 4 2 8 2 1 9 1

• E =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 2 1 2 3 4 3 4 3 2 1 2 1 0 1 0

• A =

1 2 3 4 5 6 7 8 9
1 2 3 5 6 7 9 13 16

• R =

LCA to ±1RMQ

• E: Euler tour representation: preorder walk, write node preorder number of node
when met.

• A: depth of node node in E[i].

• R: first occurrence in E of node with preorder number i

• LCA(i, j) = E[RMQA(R[i], R[j])].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 2 4 5 6 5 7 5 4 2 8 2 1 9 1

• E =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 2 1 2 3 4 3 4 3 2 1 2 1 0 1 0

• A =

1 2 3 4 5 6 7 8 9
1 2 3 5 6 7 9 13 16

• R =

9

1

2

4

5

76

83

0

1
1

2
2

2

3

4 4

• LCA(5,8) = RMQA(6, 13).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 2 1 2 3 4 3 4 3 2 1 2 1 0 1 0

• A =

• Theorem. RMQ and LCA can be solved in O(n) space and O(1) query time.

RMQ and LCA

