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• Range Minimum Queries (RMQ) and Lowest Common Ancestor (LCA)

• RMQ


• Simple solutions

• Better solution

• 2-level solution


• Reduction between RMQ and LCA

Range Minimum Queries and Lowest Common Ancestor

• Range minimum query problem. Preprocess array A[1…n] of integers to support

• RMQ(i,j): return the (entry of) minimum element in A[i…j].


• RMQ(3,6) = ?


• Basic (extreme) solutions


• Linear search: 


• Space: O(n). Only keep array (no extra space)

• Time: O(j-i) = O(n)


• Save all possible answers: Precompute and save all answers in a table. 


• Space: O(n2) pairs => O(n2) space

• Time: O(1)

Range Minimum Queries

1 2 3 4 5 6 7 8 9 10
1 7 12 8 2 5 1 4 8 3

 2 (index 5)

• Lowest common ancestor problem. Preprocess rooted tree T with n nodes to 
support

• LCA(u,v): return the lowest common ancestor of u and v.

Lowest Common Ancestor

LCA(u,v) = a

v
u

a



• Basic (extreme) solutions


• Linear search: Follow paths to root and mark when you visit a node.

• Space: O(n). Only keep tree (no extra space)


• Time: O(depth of tree) = O(n)


• Save all possible answers: Precompute and save all answers in a table.


• Space: O(n2) pairs => O(n2) space

• Time: O(1)

Lowest Common Ancestor
• Outline.


• Can solve both RMQ and LCA in linear space and constant time.

• First solution to RMQ

• Solution to a special case of RMQ.

• See that RMQ and LCA are equivalent (can reduce one to the other both 

ways).

RMQ and LCA

RMQ
• Save the result for all intervals of length a power of 2. 

RMQ: Sparse table solution



• For all positions we have all power of 2 length intervals starting at that position.


• Space: O(n log n)

RMQ: Sparse table solution
• Query:


• Any interval the union of two power of 2 intervals.

• Query the two intervals and take minimum


• Time: O(1)

RMQ: Sparse table solution

x y

ll

• Consider ±1RMQ: consecutive entries differ by at most 1.


• 2-level solution: Combine

• O(n log n) space, O(1) time

• O(n2) space, O(1) time.


• O(n) space, O(1) time.

RMQ: Linear space

1 2 3 4 5 6 7 8 9 10 11 12 13
4 5 6 5 4 3 2 3 2 3 4 5 4

⇒

• Divide A into blocks of size   

 ±1RMQ
1
2

log n

︸12 log n

x y



• Divide A into blocks of size


• 2-level data structure:

• Sparse table on blocks

• Tabulation inside blocks.


• RMQ(x,y) = min{  RMQ on blocks i to j, 

          RMQ inside block i-1, 

          RMQ inside block j+1 }.

 ±1RMQ
1
2

log n

︸12 log n

x y

i j

• Two new arrays.


• Array A’: minimum from each block


• B: position in A where A’[i] occurs.


• Sparse table data structure on A’.


• Space: O(|A’| log |A’|) = O(n).


• Time: O(1)

 ±1RMQ: Data structure on blocks

block number
min of block

︸12 log n

x y

• Precompute and save all answers for each block.


• Gives solution using


• Space: O(n) + space for precomputed tables.


• Time:   O(1)   +   O(1)   +   O(1)   =    O(1).

 ±1RMQ: Data structure inside blocks

2 table 
lookups

sparse 
table

min{⋅,⋅,⋅}

︸12 log n

x y

• Naively: log2 n for each table => n log n space. 😕


• Observation: If X[i] = Y[i] + c then all RMQ answers are the same for X and Y.

• X = [7, 6, 5, 6, 5, 4]

• Y = [3, 2, 1, 2, 1, 0]


• Normalize blocks:    

• X = [0, -1, -2, -1, -2, -3] = Y


• Normalized block described by sequence of  +1s and -1s:

• X = Y = -1, -1, +1, -1, -1.


• How many different normalized blocks are there?


• length of sequence =


• #sequences =  

 ±1RMQ: Storing the tables

1
2

log n − 1

2 1
2 log n−1 ≤ n .



• Precompute and save all answers for each normalized block.


• Size of a table: O(log2 n)


• For each block save which precomputed table it uses.


• Space: 


• Plugging into 2-level solution:


• Space: O(n) + space for precomputed tables = O(n).

 ±1RMQ: Data structure inside blocks

︸12 log n

O( n ⋅ log2 n) + O(n /log n) = O(n)

LCA and RMQ

• We will show

• RMQ                          LCA                          ±1RMQ

RMQ and LCA

reduces to reduces to 

If there is a solution to LCA 
using s(n) space and t(n) time, 

then there is a solution to RMQ 
using O(s(n)) space and O(t(n)) 
time.

If there is a solution to ±1RMQ 
using s(n) space and t(n) time, 

then there is a solution to LCA 
using O(s(n)) space and O(t(n)) 
time.

• Cartesian tree.

RMQ to LCA

1 2 3 4 5 6 7 8 9 10
1 7 12 8 2 5 1 4 8 3
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• Cartesian tree.


• RMQ(3,6) = LCA(3,6)

RMQ to LCA
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1 7 12 8 2 5 1 4 8 3
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LCA to ±1RMQ 

• E: Euler tour representation: preorder walk, write node preorder number of node 
when met.


• A: depth of node node in E[i].

• R: first occurrence in E of node with preorder number i

• LCA(i, j) = E[RMQA(R[i], R[j])].
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• E =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 2 1 2 3 4 3 4 3 2 1 2 1 0 1 0

• A =

1 2 3 4 5 6 7 8 9
1 2 3 5 6 7 9 13 16

• R =
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• R =

LCA to ±1RMQ 

• E: Euler tour representation: preorder walk, write node preorder number of node 
when met.


• A: depth of node node in E[i].

• R: first occurrence in E of node with preorder number i

• LCA(i, j) = E[RMQA(R[i], R[j])].
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• LCA(5,8) = RMQA(6, 13). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 2 1 2 3 4 3 4 3 2 1 2 1 0 1 0

• A =

• Theorem. RMQ and LCA can be solved in O(n) space and O(1) query time.

RMQ and LCA


