Range Minimum Queries and Lowest Common Ancestor

Inge Li Gørtz

Range Minimum Queries and Lowest Common Ancestor

- Range Minimum Queries (RMQ) and Lowest Common Ancestor (LCA)
- RMQ
 - Simple solutions
 - Better solution
 - 2-level solution
- Reduction between RMQ and LCA

Range Minimum Queries

- Range minimum query problem. Preprocess array A[1...n] of integers to support
 - RMQ(i,j): return the (entry of) minimum element in A[i...j].

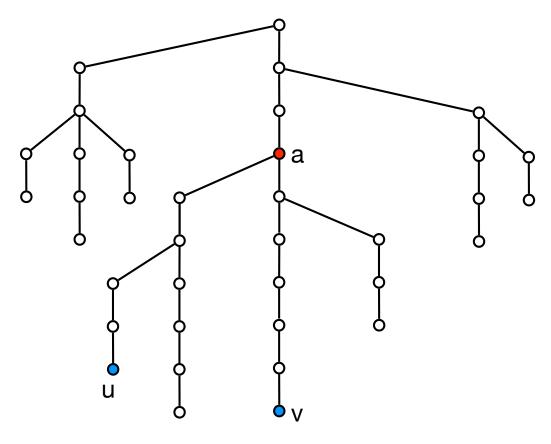
1	2	3	4	5	6	7	8	9	10
1	7	12	8	2	5	1	4	8	3

• RMQ(3,6) = 2 (index 5)

- Basic (extreme) solutions
 - · Linear search:
 - Space: O(n). Only keep array (no extra space)
 - Time: O(j-i) = O(n)
 - Save all possible answers: Precompute and save all answers in a table.
 - Space: O(n²) pairs => O(n²) space
 - Time: O(1)

Lowest Common Ancestor

- Lowest common ancestor problem. Preprocess rooted tree T with n nodes to support
 - LCA(u,v): return the lowest common ancestor of u and v.



$$LCA(u,v) = a$$

Lowest Common Ancestor

- Basic (extreme) solutions
 - Linear search: Follow paths to root and mark when you visit a node.
 - Space: O(n). Only keep tree (no extra space)
 - Time: O(depth of tree) = O(n)
 - Save all possible answers: Precompute and save all answers in a table.
 - Space: O(n²) pairs => O(n²) space
 - Time: O(1)

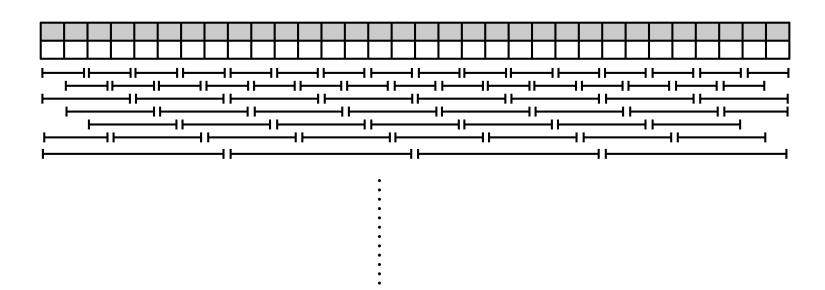
RMQ and LCA

- Outline.
 - Can solve both RMQ and LCA in linear space and constant time.
 - First solution to RMQ
 - Solution to a special case of RMQ.
 - See that RMQ and LCA are equivalent (can reduce one to the other both ways).

RMQ

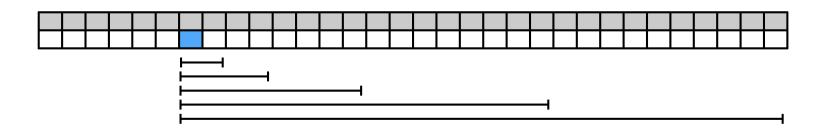
RMQ: Sparse table solution

• Save the result for all intervals of length a power of 2.



RMQ: Sparse table solution

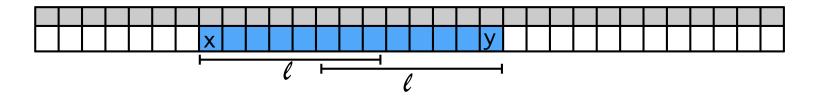
• For all positions we have all power of 2 length intervals starting at that position.



• Space: O(n log n)

RMQ: Sparse table solution

• Query:



- Any interval the union of two power of 2 intervals.
- Query the two intervals and take minimum
- Time: O(1)

RMQ: Linear space

• Consider ±1RMQ: consecutive entries differ by at most 1.

1	2	3	4	5	6	7	8	9	10	11	12	13
4	5	6	5	4	3	2	3	2	3	4	5	4

- 2-level solution: Combine
 - O(n log n) space, O(1) time
 - O(n²) space, O(1) time.

 \downarrow

• O(n) space, O(1) time.

±1RMQ

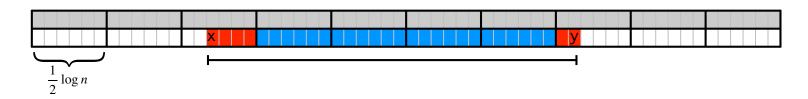
• Divide A into blocks of size $\frac{1}{2} \log n$

±1RMQ

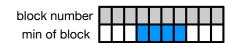
• Divide A into blocks of size $\frac{1}{2} \log n$

- 2-level data structure:
 - Sparse table on blocks
 - Tabulation inside blocks.
- RMQ(x,y) = min{ RMQ on blocks i to j,
 RMQ inside block i-1,
 RMQ inside block j+1 }.

±1RMQ: Data structure on blocks



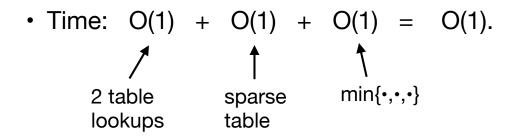
- Two new arrays.
 - Array A': minimum from each block

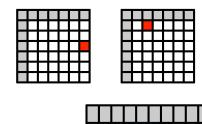


- B: position in A where A'[i] occurs.
- Sparse table data structure on A'.
- Space: $O(|A'| \log |A'|) = O(n)$.
- Time: O(1)

±1RMQ: Data structure inside blocks

- Precompute and save all answers for each block.
- · Gives solution using
 - Space: O(n) + space for precomputed tables.





±1RMQ: Storing the tables

- Naively: log² n for each table => n log n space.
- Observation: If X[i] = Y[i] + c then all RMQ answers are the same for X and Y.
 - X = [7, 6, 5, 6, 5, 4]
 - Y = [3, 2, 1, 2, 1, 0]
- Normalize blocks:

•
$$X = [0, -1, -2, -1, -2, -3] = Y$$

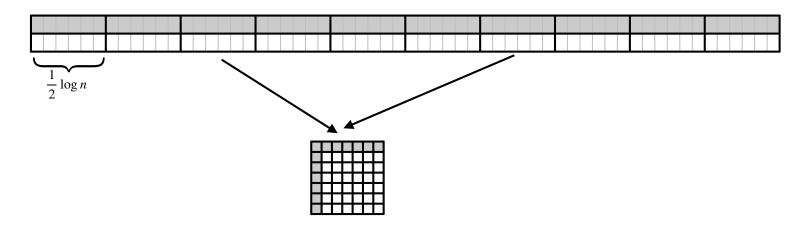
Normalized block described by sequence of +1s and -1s:

•
$$X = Y = -1, -1, +1, -1, -1.$$

- · How many different normalized blocks are there?
 - length of sequence = $\frac{1}{2} \log n 1$
 - #sequences = $2^{\frac{1}{2}\log n 1} \le \sqrt{n}$.

±1RMQ: Data structure inside blocks

- Precompute and save all answers for each normalized block.
- Size of a table: O(log² n)
- For each block save which precomputed table it uses.

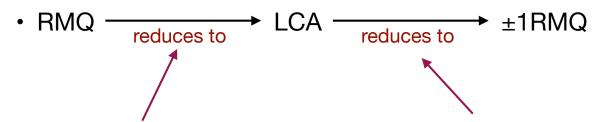


- Space: $O(\sqrt{n} \cdot \log^2 n) + O(n/\log n) = O(n)$
- Plugging into 2-level solution:
 - Space: O(n) + space for precomputed tables = O(n).

LCA and RMQ

RMQ and LCA

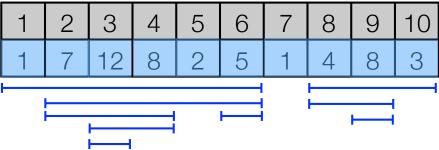
We will show

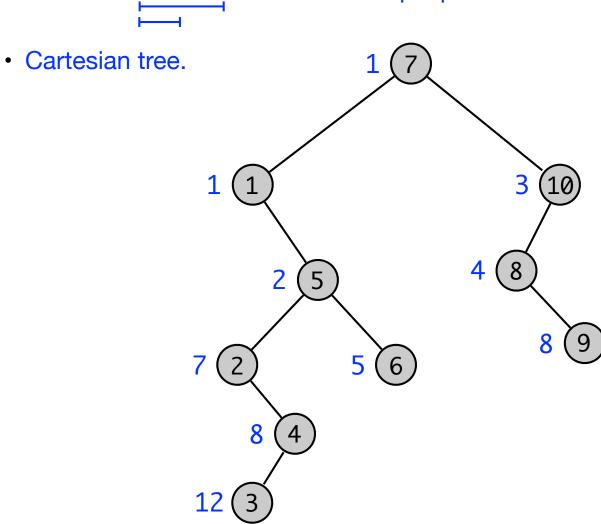


If there is a solution to LCA using s(n) space and t(n) time, then there is a solution to RMQ using O(s(n)) space and O(t(n)) time.

If there is a solution to ± 1 RMQ using s(n) space and t(n) time, then there is a solution to LCA using O(s(n)) space and O(t(n)) time.

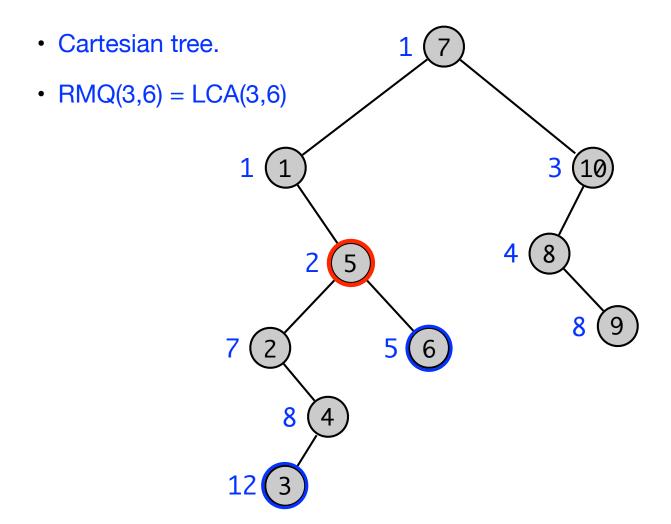
RMQ to LCA



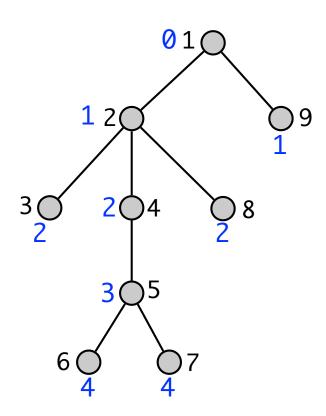


RMQ to LCA

1	2	3	4	5	6	7	8	9	10
1	7	12	8	2	5	1	4	8	3



LCA to ±1RMQ

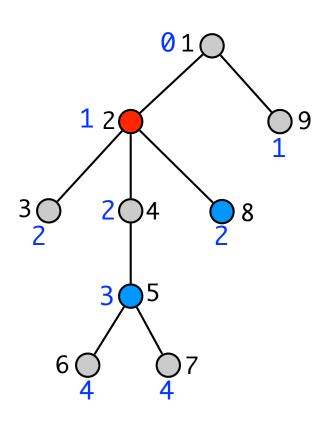


• E =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	2	4	5	6	5	7	5	4	2	8	2	1	9	1

• R =
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 5 & 6 & 7 & 9 & 13 & 16 \end{bmatrix}$$

- E: Euler tour representation: preorder walk, write node preorder number of node when met.
- A: depth of node node in E[i].
- R: first occurrence in E of node with preorder number i
- LCA(i, j) = $E[RMQ_A(R[i], R[j])]$.

LCA to ±1RMQ



• $LCA(5,8) = RMQ_A(6, 13)$.

•
$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 5 & 6 & 7 & 9 & 13 & 16 \end{bmatrix}$$

- E: Euler tour representation: preorder walk, write node preorder number of node when met.
- A: depth of node node in E[i].
- R: first occurrence in E of node with preorder number i
- LCA(i, j) = $E[RMQ_A(R[i], R[j])]$.

RMQ and LCA

• Theorem. RMQ and LCA can be solved in O(n) space and O(1) query time.