Approximation Algorithms

02282 Inge Li Gørtz

Approximation algorithms

- Fast. Cheap. Reliable. Choose two.
- NP-hard problems: choose 2 of
 - optimal
 - polynomial time
 - all instances
- Approximation algorithms. Trade-off between time and quality.
- Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an *a-approximation algorithm* if for any instance I of the optimization problem:
 - A runs in polynomial time
 - · A returns a valid solution
 - A(I) $\leq \alpha \cdot \text{OPT}$, where $\alpha \geq 1$, for minimization problems
 - $A(I) \ge \alpha \cdot OPT$, where $\alpha \le 1$, for maximization problems

Load balancing

Scheduling on identical parallel machines

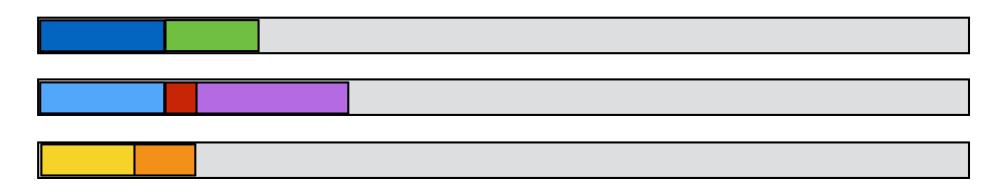
- n jobs to be scheduled on m identical machines.
- Each job has a processing time t_j.
- Once a job has begun processing it must be completed.
- T_{j:} Load of machine j.
- Goal. Schedule all jobs so as to *minimize the maximum load (makespan)*:

```
minimize T = \max_{i=1...n} T_i
```

Simple greedy (list scheduling)

- Simple greedy. Process jobs in any order. Assign next job on list to machine with smallest current load.
- The greedy algorithm above is a 2-approximation algorithm:
 - polynomial time
 - valid solution \checkmark
 - factor 2

Approximation factor



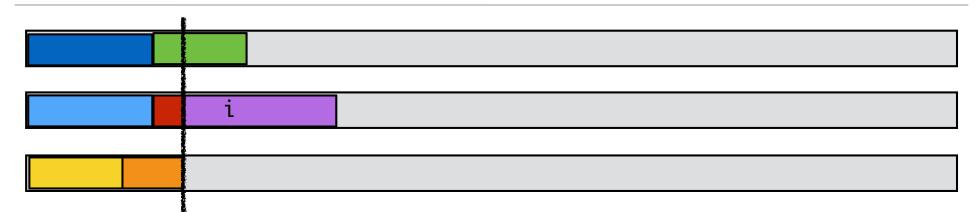
- Lower bounds:
 - Each job must be processed:

$$T^* \ge \max_j t_j$$

• There is a machine that is assigned at least average load:

$$T^* \ge \frac{1}{m} \sum_j t_j$$

Approximation factor



- i: job finishes last.
- All other machines busy until start time s of i. (s = $T_i t_i$)
- Partition schedule into before and after s.
- After $\leq T^*$.
- Before:
 - All machines busy => total amount of work = $m \cdot s$:

$$m \cdot s \leq \sum_{j} t_{j} \qquad \Rightarrow s \leq \frac{1}{m} \sum_{j} t_{j} \leq T^{*}$$

• Length of schedule \leq T*+ T* = 2T*.

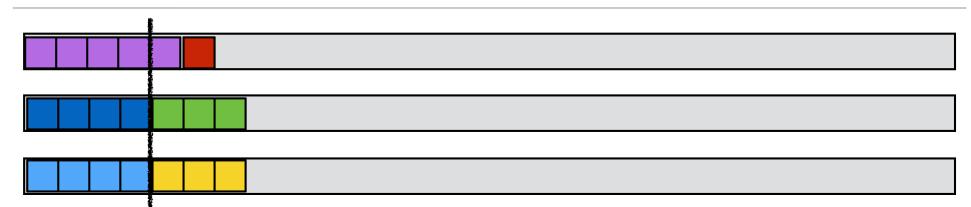
Longest processing time rule

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

Longest processing time rule

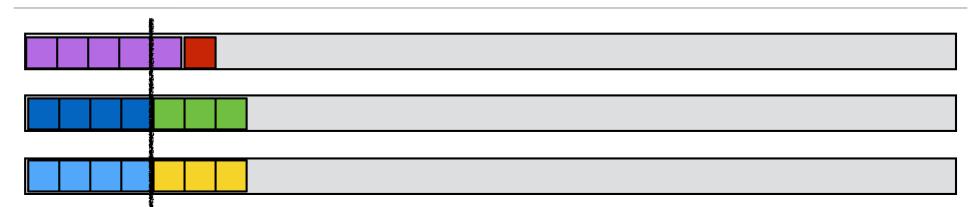
- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- LPT is a is a 3/2-approximation algorithm:
 - polynomial time
 - valid solution \checkmark
 - factor 3/2

Longest processing time rule: factor 3/2



- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $t_1 \ge \ldots \ge t_n$.
- If $n \le m$ then optimal.
- Lower bound: If n > m then $T^* \ge 2t_{m+1}$.
- Factor 3/2:
 - Before $\leq T^*$
 - After: i job that finishes last.
 - $t_i \le t_{m+1} \le T^*/2$.
 - $T \le T^* + T^*/2 \le 3/2 T^*$.
- Tight?

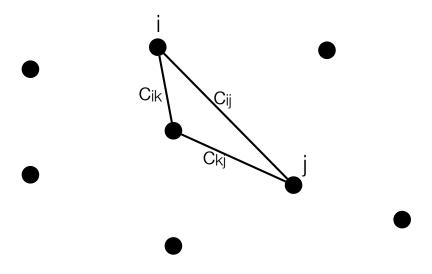
Longest processing time rule: factor 4/3



- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $t_1 \ge \ldots \ge t_n$.
- · Assume wlog that smallest job finishes last.
- If $t_n \le T^*/3$ then $T \le 4/3 T^*$.
- If $t_n > T^*/3$ then each machine can process at most 2 jobs in OPT.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.
- Theorem. LPT is a 4/3-approximation algorithm.

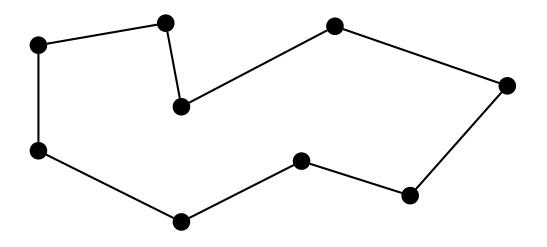
Traveling salesman problem

Traveling Salesman Problem (TSP)

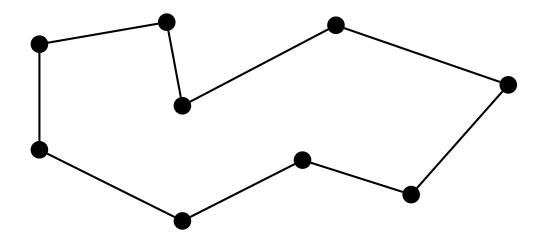


- Set of cities {1,...,n}
- $c_{ij} \ge 0$: cost of traveling from i to j.
- c_{ij} a metric:
 - c_{ii} = 0
 - $C_{ij} = C_{ji}$
 - $C_{ij} \le C_{ik} + C_{kj}$ (triangle inequality)
- Goal: Find a tour of minimum cost visiting every city exactly once.

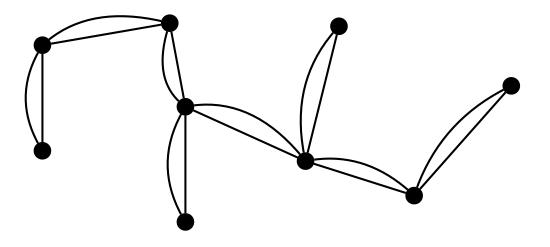
Traveling Salesman Problem (TSP)



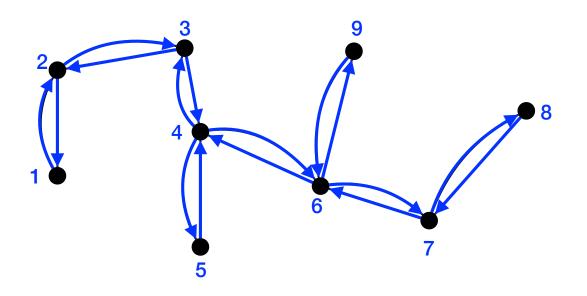
- Set of cities {1,...,n}
- $c_{ij} \ge 0$: cost of traveling from i to j.
- c_{ij} a metric:
 - c_{ii} = 0
 - $C_{ij} = C_{ji}$
 - $C_{ij} \leq C_{ik} + C_{kj}$
- Goal: Find a tour of minimum cost visiting every city exactly once.



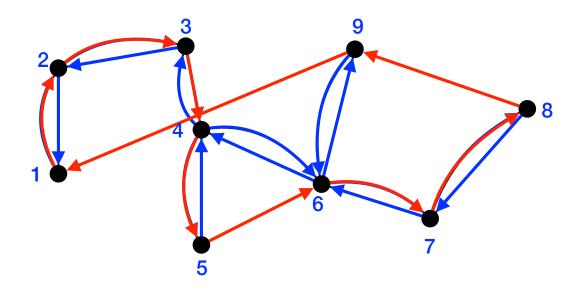
- MST is a lower bound on TSP.
 - Deleting an edge e from OPT gives a spanning tree.
 - OPT \geq OPT $c_e \geq$ MST.



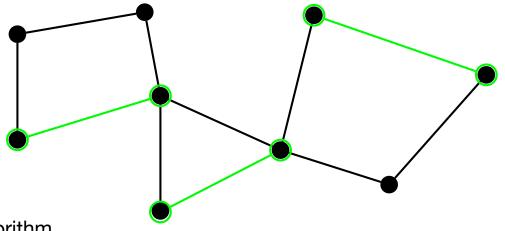
- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour τ (a tour visiting every edge exactly once).



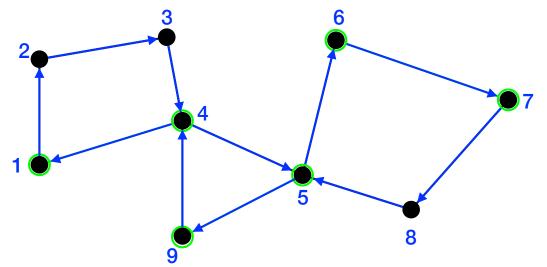
- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour τ (a tour visiting every edge exactly once).



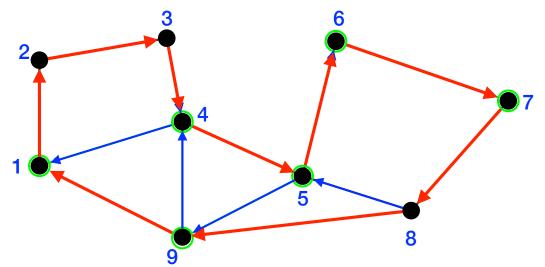
- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour τ (a tour visiting every edge exactly once).
 - Shortcut τ such that each vertex only visited once (τ ')
- length(τ ') \leq length(τ) = 2 cost(T) \leq 2 OPT.
- The double tree algorithm is a 2-approximation algorithm for TSP.



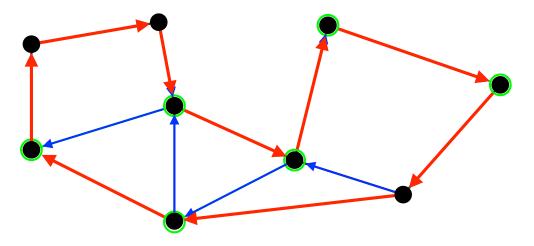
- Christofides' algorithm
 - Compute MST T.
 - No need to double all edges:
 - Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges visiting every edge exactly once.
 - G Eulerian iff G connected and all nodes have even degree.
 - Consider set O of all odd degree vertices in T.
 - Find minimum cost perfect matching M on O.
 - Matching: no edges share an endpoint.
 - Perfect: all vertices matched.
 - Perfect matching on O exists: Number of odd vertices in a graph is even.
 - T + M is Eulerian (all vertices have even degree).



- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour $\boldsymbol{\tau}$
 - Shortcut such that each vertex only visited once (τ')

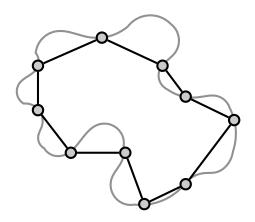


- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour $\boldsymbol{\tau}$
 - Shortcut such that each vertex only visited once (τ')



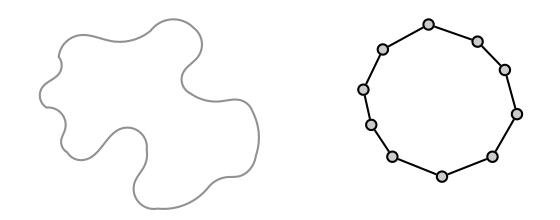
- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour τ
 - Shortcut such that each vertex only visited once (τ')
- $length(\tau) \le length(\tau) = cost(T) + cost(M) \le OPT + weight(M)$.

Analysis of Christofides' algorithm



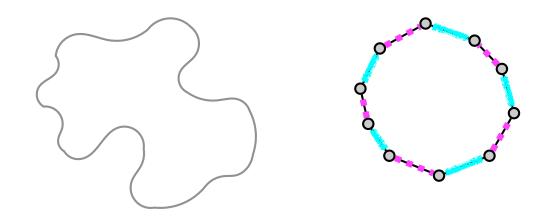
- weight(M) \leq OPT/2.
 - $OPT_o = OPT$ restricted to O.
 - $OPT_o \leq OPT$.

Analysis of Christofides' algorithm



- weight(M) \leq OPT/2.
 - $OPT_o = OPT$ restricted to O.
 - $OPT_o \leq OPT$.

Analysis of Christofides' algorithm



- weight(M) \leq OPT/2:
 - $OPT_o = OPT$ restricted to O.
 - $OPT_o \leq OPT$.
 - can partition OPT_o into two perfect matchings O_1 and O_2 .
 - $cost(M) \le min(cost(O_1), cost(O_2)) \le OPT/2$.
- $length(\tau) \le length(\tau) = cost(T) + cost(M) \le OPT + OPT/2 = 3/2 OPT.$
- Christofides' algorithm is a 3/2-approximation algorithm for TSP.