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• Fast. Cheap. Reliable. Choose two.

• NP-hard problems: choose 2 of


• optimal

• polynomial time

• all instances


• Approximation algorithms. Trade-off between time and quality.


• Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an α-
approximation algorithm if for any instance I of the optimization problem:

• A runs in polynomial time

• A returns a valid solution

• A(I) ≤  α ∙ OPT, where α ≥ 1, for minimization problems  

• A(I) ≥  α ∙ OPT, where α ≤ 1, for maximization problems  

Approximation algorithms



Load balancing



• n jobs to be scheduled on m identical machines.

• Each job has a processing time tj.

• Once a job has begun processing it must be completed.

• Tj: Load of machine j.

• Goal. Schedule all jobs so as to minimize the maximum load (makespan):

Scheduling on identical parallel machines

 minimize T = maxi=1…n Tj



• Simple greedy. Process jobs in any order. Assign next job on list to machine with 
smallest current load.


• The greedy algorithm above is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

Simple greedy (list scheduling)

✓
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• Lower bounds:


• Each job must be processed:


• There is a machine that is assigned at least average load: 

Approximation factor
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• i: job finishes last.


• All other machines busy until start time s of i. (s = Ti - ti)


• Partition schedule into before and after s.


• After ≤ T*.


• Before: 


• All machines busy => total amount of work = m⋅s:





• Length of schedule ≤  T*+ T* = 2T*.

m ⋅ s ≤ ∑
j

tj ⇒ s ≤
1
m ∑

j

tj ≤ T*

Approximation factor
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• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 

Longest processing time rule



• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 


• LPT is a is a 3/2-approximation algorithm:

• polynomial time

• valid solution

• factor 3/2

Longest processing time rule
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• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 


• Assume t1  ≥ …. ≥ tn. 

• If n ≤ m then optimal.

• Lower bound: If n > m then T* ≥ 2tm+1.

• Factor 3/2:


• Before ≤ T*

• After: i job that finishes last. 


• ti ≤ tm+1 ≤ T*/2.

• T ≤ T* + T*/2 ≤ 3/2 T*.


• Tight?

Longest processing time rule: factor 3/2



• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 


• Assume t1  ≥ …. ≥ tn. 

• Assume wlog that smallest job finishes last.

• If tn ≤ T*/3 then T ≤ 4/3 T*.

• If tn > T*/3 then each machine can process at most 2 jobs in OPT.

• Lemma. For any input where the processing time of each job is more than a third of 

the optimal makespan, LPT computes an optimal schedule. 

• Theorem. LPT is a 4/3-approximation algorithm.

Longest processing time rule: factor 4/3



Traveling salesman problem



• Set of cities {1,…,n}

• cij ≥ 0: cost of traveling from i to j.

• cij a metric:


• cii = 0

• cij = cji 

• cij ≤ cik + ckj       (triangle inequality)


• Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)
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• Set of cities {1,…,n}

• cij ≥ 0: cost of traveling from i to j.

• cij a metric:


• cii = 0

• cij = cji 

• cij ≤ cik + ckj


• Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)



• MST is a lower bound on TSP.

• Deleting an edge e from OPT gives a spanning tree.

• OPT ≥ OPT - ce ≥ MST.

Double tree algorithm



• Double tree algorithm

• Compute MST T.

• Double edges of T


• Construct Euler tour 𝞃 (a tour visiting every edge exactly once).

Double tree algorithm



• Double tree algorithm

• Compute MST T.

• Double edges of T
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• Double tree algorithm

• Compute MST T.

• Double edges of T


• Construct Euler tour 𝞃 (a tour visiting every edge exactly once).


• Shortcut 𝞃 such that each vertex only visited once (𝞃’)


• length(𝞃’) ≤ length(𝞃) = 2 cost(T) ≤ 2 OPT.


• The double tree algorithm is a 2-approximation algorithm for TSP.

Double tree algorithm
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• Christofides’ algorithm

• Compute MST T.

• No need to double all edges:


• Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges 
visiting every edge exactly once. 
• G Eulerian iff G connected and all nodes have even degree.


• Consider set O of all odd degree vertices in T. 

• Find minimum cost perfect matching M on O. 


• Matching: no edges share an endpoint.

• Perfect: all vertices matched.

• Perfect matching on O exists: Number of odd vertices in a graph is even. 


• T + M is Eulerian (all vertices have even degree).

Christofides’ algorithm



• Christofides’ algorithm

• Compute MST T.

• O = {odd degree vertices in T}. 

• Compute minimum cost perfect matching M on O. 


• Construct Euler tour 𝞃


• Shortcut such that each vertex only visited once (𝞃’) 

Christofides’ algorithm
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• Shortcut such that each vertex only visited once (𝞃’) 

Christofides’ algorithm

1

2
3

4

5

9
8

7

6



• Christofides’ algorithm

• Compute MST T.

• O = {odd degree vertices in T}. 

• Compute minimum cost perfect matching M on O. 


• Construct Euler tour 𝞃


• Shortcut such that each vertex only visited once (𝞃’) 


• length(𝞃’) ≤ length(𝞃) = cost(T) + cost(M) ≤ OPT + weight(M).

Christofides’ algorithm



• weight(M) ≤ OPT/2.

• OPTo = OPT restricted to O.

• OPTo ≤ OPT.

Analysis of Christofides’ algorithm
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• weight(M) ≤ OPT/2:

• OPTo = OPT restricted to O.

• OPTo ≤ OPT.

• can partition OPTo into two perfect matchings O1 and O2.

• cost(M) ≤ min(cost(O1), cost(O2)) ≤ OPT/2.


• length(𝞃’) ≤ length(𝞃) = cost(T) + cost(M) ≤ OPT + OPT/2 = 3/2 OPT.


• Christofides’ algorithm is a 3/2-approximation algorithm for TSP.

Analysis of Christofides’ algorithm




