Approximation Algorithms II
O2282 Inge Li Gortz A

Today

- Hardness of approximation of TSP.
- k-center problem

TSP: Inapproximability

- G has a Hamiltonian cycle
$\Leftrightarrow \quad$ optimal cost of TSP in G^{\prime} is $n=9$
$\Leftrightarrow \quad$ optimal cost of TSP in G^{\prime} is at least $n-1+46$
- G has no Hamiltonian cycle

TSP: Inapproximability

- G has a Hamiltonian cycle
$\Leftrightarrow \quad$ optimal cost of TSP in G^{\prime} is n.
$\Leftrightarrow \quad$ optimal cost of TSP in $G^{\prime} \geq n-1+(a n+1)$
$=(a+1) n$

k-center

k-center: Greedy algorithm

- Greedy algorithm.
- Pick arbitrary i in V. between each pair of vertices $i, j \in V$.
- d is a metric:
- $\operatorname{dist}(\mathrm{i}, \mathrm{i})=0$
- $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\operatorname{dist}(\mathrm{j}, \mathrm{i})$
- $\operatorname{dist}(\mathrm{i}, \mathrm{I}) \leq \operatorname{dist}(\mathrm{i}, \mathrm{j})+\operatorname{dist}(\mathrm{j}, \mathrm{l})$
- Goal. Choose a set $\mathrm{S} \subseteq \mathrm{V},|\mathrm{S}|=\mathrm{k}$, of k centers so as to minimize the maximum distance of a vertex to its closest center.

$$
S=\operatorname{argmin}_{S \subseteq \mathrm{~V},|\mathrm{~S}|=\mathrm{k}} \max _{\mathrm{i} \in \mathrm{~V}} \operatorname{dist}(\mathrm{i}, \mathrm{~S})
$$

- Covering radius. Maximum distance of a vertex to its closest center.

- Set S = \{i\}
- while $|S|<k$ do
- Find vertex j farthest away from any cluster center in S
- Add j to S
- Greedy is a 2-approximation algorithm:

- polynomial time $/$
- valid solution
- factor 2

k-center analysis: optimal clusters

- Optimal clusters: each vertex assigned to its closest optimal center

k-center: analysis greedy algorithm

r* optimal radius.

- Show all vertices within distance $2 r^{\star}$ from a center.
- Consider optimal clusters. 2 cases

1. Algorithm picked one center in each optimal cluster
distance from any vertex to its closest center $\leq 2 r^{*}$.

2. Some optimal cluster does not have a center.

- Some cluster have more than one center.
- Distance between these two centers $\leq 2 r^{*}$.
- When second center in same cluster picked it was the vertex farthest away from any center.
- Distance from any vertex to its closest center at most $2 r^{*}$.

k -center analysis

- r${ }^{*}$ optimal radius.
- Claim: Two vertices in same optimal cluster has distance at most $2 r^{*}$ to each other.

Bottleneck algorithm

- Assume we know the optimum covering radius r.
- Bottleneck algorithm.
- Set R := V and S := \varnothing.
- while $R \neq \varnothing$ do
- Pick arbitrary i in R
- Add j to S
- Remove all vertices with $\mathrm{d}(\mathrm{j}, \mathrm{v}) \leq 2 \mathrm{r}$ from R .
- Example: $\mathrm{k}=3 . \mathrm{r}=4$.

Analysis bottleneck algorithm

- r* optimal radius.
- Covering radius is at most $2 r=2 r^{*}$.
- Show that we cannot pick more than k centers:
- We can pick at most one in each optimal cluster:
- Distance between two nodes in same optimal cluster $\leq 2 r$.*
- When we pick a center in a optimal cluster all nodes in same optimal cluster is removed.

k-center: Inapproximability

- There is no a-approximation algorithm for the k-center problem for $\mathrm{a}<2$ unless $\mathrm{P}=\mathrm{NP}$.
- Proof. Reduction from dominating set.
- Dominating set. Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and k . Is there a (dominating) set $\mathrm{S} \subseteq \mathrm{V}$ of size k , such that each vertex is either in S or adjacent to a vertex in S ?
- Given instance of the dominating set problem construct instance of k-center problem:
- Complete graph G' on V.
- All edges from E has weight 1 , all new edges have weight 2.
- Radius in k-center instance 1 or 2.
- G has an dominating set of size k <=> opt solution to the k -center problem has radius 1 .
- Use a-approximation algorithm A
- opt $=1$ => A returns solution with radius at most $\alpha<2$
- opt $=2=>$ A returns solution with radius at least 2.
- Can use A to distinguish between the 2 cases.

Analysis bottleneck algorithm

- r^{*} optimal radius.
- Can use algorithm to "guess" r^{\star} (at most n^{2} values).
- If algorithm picked more than k centers then $r^{*}>r$.
- If algorithm picked more than k centers then it picked more than one in some optimal cluster
- Distance between two nodes in same optimal cluster $\leq 2 r$.*
- If more than one in some optimal cluster then $2 r<2 r^{*}$.

0

0

