
Persistent Data Structures and Planar Point
Location

Inge Li Gørtz

Persistent Data Structures

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5

V1

V2

V3

V4

V5V6

V7

V1

V2

V3 V4

V5

V6

V7

V8

Ephemeral
Partial

persistence
Full

persistence
Confluent

persistence

q

u

e

r

i

e

s

update

update and query all
versions

update, query and
combine all versions

update and
query last

version

Simple methods for making data structures persistent

• Structure-copying method. Create a copy of the data structure each time it
is changed. Slowdown of Ω(n) time and space per update to a data
structure of size n.

• Store a log-file of all updates. In order to access version i, first carry out i
updates, starting with the initial structure, and generate version i.
Overhead of Ω(i) time per access, O(1) space and time per update.

• Hybrid-method. Store the complete sequence of updates and additionally
each k-th version for a suitably chosen k. Result: Any choice of k causes
blowup in either storage space or access time.

Overview

• Partial persistence.

• Fat node method.

• Node copying

• Algorithmic applications

Partial Persistence

Fat node method

Fat node method

• Associate set c(x) for each location in memory x.

• c(x)={<t,v>: x modified in version t, x has value v after construction of
version t}

• Query q(t,x): Find largest version number t’ in t such that t’≤ t. Return value
associated with t’ in A(x).

• Update (create new version m): If memory locations x1,...,xk modified to the
values v1,...vk: Insert <m,vi> in A(xi).

x

A(x): data structure containing c(x)

Fat node method

• Implementation of A(x):

• Balanced binary search tree:

• query O(log |c(x)|) = O(log m), m number of versions.

• Update: O(1)

• Extra space: O(1)

• y-fast trie:

• query: O(loglog m)

• update: expected O(loglog m)

• Extra space: O(1)

Fat node method

• Driscoll, Sarnak, Sleator, Tarjan, 1989.

• Any data structure can be made partially persistent with slowdown
O(log m) for queries and O(1) for updates. The space cost is O(1) for
each ephemeral memory modification.

• Any data structure can be made partially persistent on a RAM with
slowdown O(loglog m) for queries and expected slowdown O(loglog m)
for updates. The space cost is O(1) for each ephemeral memory
modification

Partial Persistence

Node copying method

Node copying method

• Linked data structure with bounded
indegree p, p = O(1).

• Each node has p predecessor
pointers + p + 1 extra fields.

• Auxiliary array to keep pointer to root
of each version

(field name, version)

Partially persistent balanced search trees via node
copying

• One extra pointer field in each node enough

• Extra pointers: tagged with version number and field name.

• When ephemeral update allocates a new node you allocate a new node as
well.

• When the ephemeral update changes a pointer field:

• If the extra pointer is empty use it, otherwise copy the node.

• Try to store pointer to the new copy in its parent.

• If the extra pointer at the parent is occupied copy the parent…..

• Maintain array of roots indexed by timestamp.

Partially persistent balanced search trees via node
copying

• Analysis

• Time slowdown:

• access: O(1)

• updates: O(1) amortized

• Extra space factor: O(1) amortized

• O(1) for new nodes also created by ephemeral data structure

• O(1) amortized space for nodes created when a node is full.

• Live nodes: Reachable from latest root.

• Potential function:

• Amortized cost of of an update = actual cost + change in potential.

• Consider insertion creating k new nodes (k-1 copied):

• Copied node: old live node had potential 1. New copy has potential 0.

• Number of live nodes increases by 1.

• Am. cost

Partially persistent balanced search trees via node
copying

Φ(Di) = #live nodes − #free slots in live nodes

= k + Φ(Di) − Φ(Di−1)

= k + (1 − (k − 1))
= 2

Partially Persistent Data Structures

• Driscoll, Sarnak, Sleator, Tarjan, 1989.

• Any bounded-degree linked data structure can be made partially
persistent with (worst-case) slowdown O(1) for queries, amortized
slowdown O(1) for updates, and amortized space cost O(1) per memory
modification.

Algorithmic Applications

Planar Point Location

• Planar point location. Euclidean plane subdivided into polygons by n line
segments that intersect only at their endpoints.

• Query: given a query point p determine which polygon that contains p.

From slides by H. Kaplan

Planar point location: Example

�18From slides by H. Kaplan

Planar point location: Example

Planar Point Location

• Within each slab the lines are totally
ordered.

• Search tree per slab containing the
lines at the leaves with each line
associate the polygon above it.

• Another search tree on the x-
coordinates of the vertical lines.

• query

• find appropriate slab

• search the search tree of the slab to
find the polygon

Planar Point Location

• One search tree for each slab:

• Query time:

• O(log n)

• Space:

• Ω(n2)

Total # lines O(n), and number of lines in each slab is O(n).

Planar point location: Improve space bound

• Key observation: The lists of the lines in
adjacent slabs are very similar.

• Create the search tree for the first slab.

• Obtain the next one by deleting the
lines that end at the corresponding
vertex and adding the lines that start at
that vertex.

• Number of insertions/deletions? 2n

• Use partially persistent search tree.
x-axis is time.

Planar Point Location

• Sarnak and Tarjan. Sweep line + partially persistent binary search tree:

• Preprocessing time: O(n log n)

• Query time: O(log n)

• Space O(n)

• To get linear space: Balanced binary search tree with worst case O(1)
memory modifications per update.

