Range Minimum Queries and
Lowest Common Ancestor

Inge Li Gortz

Range Minimum Queries and Lowest Common Ancestor

» Range Minimum Queries (RMQ) and Lowest Common Ancestor (LCA)
+ RMQ

» Simple solutions

+ Better solution

+ 2-level solution
+ Reduction between RMQ and LCA

Range Minimum Queries

+ Range minimum query problem. Preprocess array A[1...n] of integers to support

+ RMQ(,j): return the (entry of) minimum element in A[i...j].

112]|13[4[5]6[7[8]9]10
11711282 |5[1[4]|8]3

« RMQ(@3,6) = 2 (index 5)

+ Basic (extreme) solutions

* Linear search:
+ Space: O(n). Only keep array (no extra space)
+ Time: O(j-i) = O(n)
+ Save all possible answers: Precompute and save all answers in a table.
+ Space: O(n?) pairs => O(n?) space
» Time: O(1)

Lowest Common Ancestor

» Lowest common ancestor problem. Preprocess rooted tree T with n nodes to
support

+ LCA(u,v): return the lowest common ancestor of u and v.

\Z

LCA(u,v) =a

Lowest Common Ancestor

«+ Basic (extreme) solutions
« Linear search: Follow paths to root and mark when you visit a node.
+ Space: O(n). Only keep tree (no extra space)

+ Time: O(depth of tree) = O(n)

+ Save all possible answers: Precompute and save all answers in a table.

» Space: O(n?) pairs => O(n2) space
+ Time: O(1)

RMQ and LCA

» Outline.
+ Can solve both RMQ and LCA in linear space and constant time.
+ First solution to RMQ
+ Solution to a special case of RMQ.
+ See that RMQ and LCA are equivalent (can reduce one to the other both
ways).

RMQ

RMQ: Sparse table solution

+ Save the result for all intervals of length a power of 2.

e e e

— —— — — — — — — A — — A — —
— —

RMQ: Sparse table solution

« For all positions we have all power of 2 length intervals starting at that position.

e e

[|
—_—
_—

« Space: O(n log n)

RMQ: Sparse table solution

* Query:
X y
——— -

+ Any interval the union of two power of 2 intervals.
+ Query the two intervals and take minimum
» Time: O(1)

RMQ: Linear space

+ Consider +1RMQ: consecutive entries differ by at most 1.

1123|1456 7[8[9]10(11]12]13
415|16[5]14|3]2]3]2[3]4]5[4

« 2-level solution: Combine
+ O(n log n) space, O(1) time
« O(n?) space, O(1) time.

{

» O(n) space, O(1) time.

+1RMQ

1
« Divide A into blocks of size) logn

+1RMQ

1
« Divide A into blocks of size) logn

i 3

T eeaoe——

1
—logn
7 log

« 2-level data structure:
» Sparse table on blocks
« Tabulation inside blocks.

+ RMQ(x,y) = min{ RMQ on blocks i to j,
RMQ inside block i-1,
RMQ inside block j+1 }.

+1RMQ: Data structure on blocks

T s————

1
Flozn

Two new arrays.
+ Array A’: minimum from each block - THHIT
+ B: position in A where A’[i] occurs.

Sparse table data structure on A'.

Space: O(A’| log |A’]) = O(n).

Time: O(1)

+1RMQ: Data structure inside blocks

—

=
7 logn

+ Precompute and save all answers for each block. R

mEE

+ Gives solution using

« Space: O(n) + space for precomputed tables. HEWEH

- Time: O(1) + O(1) + O(1) = O(1).

/ ! \

2 table sparse min{s,+,}
lookups table

+1RMQ: Storing the tables

Naively: log2 n for each table => n log n space. &

Observation: If X[i] = Y[i] + ¢ then all RMQ answers are the same for X and Y.
+ X=[7,6,5,6,5, 4]
*Y=1[3,21,2,1,0]

Normalize blocks:
« X=[0,-1,-2,-1,-2,-3]=Y

Normalized block described by sequence of +1s and -1s:
+ X=Y=-1,-1,+1,-1,-1.

How many different normalized blocks are there?

1
+ length of sequence = 5 logn—1

1 o n—
- #sequences = 277! <\/n.

+1RMQ: Data structure inside blocks

* Precompute and save all answers for each normalized block.

« Size of a table: O(log2 n)

« For each block save which precomputed table it uses.

1 \ /
~logn
2

- Space: O(y/n - 1og?n) + O(n/log n) = O(n)
+ Plugging into 2-level solution:

« Space: O(n) + space for precomputed tables = O(n).

LCA and RMQ

RMQ and LCA

« We will show
- RMQ LCA —dices 0 +1RMQ

reduces to

If there is a solution to +1RMQ
using s(n) space and t(n) time,

If there is a solution to LCA
using s(n) space and t(n) time,

then there is a solution to RMQ then there is a solution to LCA
using O(s(n)) space and O(t(n)) using O(s(n)) space and O(t(n))
time.

time.

RMQ to LCA

11213415167

1171282]5]|1

+ Cartesian tree.

RMQ to LCA

112|314]|5]|6]7]8]9]10
17112812 |5]1])14]18]83

« Cartesian tree.

+ RMQ(3,6) = LCA(3,6)

LCA to £1RMQ

E=[1,2,8,24,56,57,54,2,8,2,1,9,1]
A=[0,1,2,1,2,3,4,3,4,3,2,1,2,1,0,1,0]
R=[1,2,35,6,7,9,13, 16]

E: Euler tour representation: preorder walk, write node preorder number of node
when met.

A: depth of node node in E[i].
R: first occurrence in E of node with preorder number i
LCA(, j) = EIRMQ(R(], R

LCA to +1RMQ

E=[1,2,3,24,56,5,7,54,28,2,1,9,1]
A=00,1,2,1,2,8,4,3,4,3,2,/1,2,1,0,1,0]
R=[1,2,3,5,6,7,9, 13, 16]
LCA(5,8) = RMQ(6, 13).

E: Euler tour representation: preorder walk, write node preorder number of node
when met.

A: depth of node node in EJi].
R: first occurrence in E of node with preorder number i
LCA(;, j) = EIRMQ(RI, R

RMQ and LCA

+ Theorem. RMQ and LCA can be solved in O(n) space and O(1) query time.

