Suffix Trees

- String Dictionaries
- Tries
- Suffix Trees
- Suffix Sorting

String Dictionaries

String dictionary problem. Let S be a string of characters from alphabet Σ. Preprocess S into data structure to support:

- `search(P)`: Return the starting positions of all occurrences of P in S.

Example.

- $S = \text{yabbadabbado}$
- $\text{search(abba)} = \{1, 6\}$
Tries

- Tries [Fredkin 1960]. Retrieval. Store a set of strings in a rooted tree such that:
 - Each edge is labeled by a character. Edges to children of a node are sorted from left-to-right alphabetically.
 - Each root-to-leaf path represents a string in the set. (obtained by concatenating the labels of edges on the path).
 - Common prefixes share same path maximally.
 - Prefix free.
 - Append special character $ < \text{any character in } \Sigma$ to each string.

 \implies Each leaf correspond to a unique string.

- Suffix trie.
 - Trie of all suffixes of a string.

\[\begin{array}{c}
\text{Trie of all suffixes for yabbadabbado$} \\
\text{Space. } O(n^2) \\
\text{Preprocessing. } O(n^2)
\end{array} \]

Search(P):

- Process P from left-to-right while doing top-down search of trie:
 - At each node identify (unique) edge matching next character in P.
 - If no such edge, P is not a substring of S.
 - Report labels of all leaves below final node.

- Example.
 - search(abba) = \{1,6\}

- Time.
 - Top-down search +
 - Time for reporting leaves

 $\implies O(m + occ)$

\[\begin{array}{c}
\text{Example.} \\
\text{search(abba) = \{1,6\}}
\end{array} \]

Theorem. We can solve the string dictionary problem in

- $O(n^2)$ space and preprocessing time.
- $O(m + occ)$ time for queries.
Suffix Trees

- String Dictionaries
- Tries
- Suffix Trees
- Suffix Sorting

The compact trie of all suffixes of S.
- Chains of nodes with single child are compacted into a single edge.

Suffix Trees

- Space.
 - Number of edges + space for edge labels
 - \(\Rightarrow O(n) \) space
- Preprocessing. \(O(sort(n,|\Sigma|)) \)
 - \(sort(n,|\Sigma|) \) = time to sort n characters from an alphabet \(\Sigma \).
 - Search(P): as before.

Suffix Trees

- Theorem. We can solve the string dictionary problem in
 - \(O(n) \) space and \(sort(n,|\Sigma|) \) preprocessing time.
 - \(O(m + occ) \) time for queries.
Suffix Trees

• Applications.
 • Approximate string matching problems
 • Compression schemes (Lempel-Ziv family, ...)
 • Repetitive string problems (palindromes, tandem repeats, ...)
 • Information retrieval problems (document retrieval, top-k retrieval, ...)
 • ...
Suffix Sorting

- **Suffix sorting.** Given string S of length n over alphabet Σ, compute the sorted lexicographic order of all suffixes of S.
- **Theorem [Kasai et al. 2001].** Given the sorted lexicographic order of suffixes of S, we can construct the suffix tree for S in linear time.
- How do we sort suffixes?

Sorting Small Universes

- Let X be a sequence of n integers from a universe U = {0, 1, ..., u-1}.
- How fast can we sort if the size of the universe is not too big?
 - U = {0, 1}?
 - U = {0, ..., n-1}?
 - U = {0, ..., n^3 - 1}?

Suffix Sorting

- **Goal.** Compute the lexicographic order of all suffixes of S fast.
- **Warm up.** Sorting small universes.
- **Solution in 3 steps.**
 - Solution 1: Radix sorting
 - Solution 2: Prefix doubling
 - Solution 3: Difference cover sampling

Sorting Small Universes

- **Radix Sort [Hollerith 1887].** Sort sequence X of n integers from U = {0, ..., n^3-1}.
 - Write each x ∈ X as a base n integer (x₁, x₂, x₃): x = x₁·n² + x₂·n + x₃
 - Sort X according to rightmost (least significant) digit
 - Sort X according to middle digit
 - Sort X according to leftmost (most significant) digit
 - Each sort should be **stable**.
 - Final result is the sorted sequence of X.

- **Positional number systems.** The base-n representation of x is x written in base n.
- **Example.**
 - (10)₁₀ = (1010)₂ = (1·2³ + 0·2² + 1·2¹ + 0·2⁰)
 - (107)₁₀ = (212)₇ = (2·7² + 1·7¹ + 2·7⁰)
n = 10, U = \{0, ..., n^3 - 1 = 999\}

- Theorem. We can sort n integers from a universe U = \{0, ..., n^3 - 1\} in O(n) time.
- Theorem. We can sort n integers from a universe U = \{0, ..., n^k - 1\} in O(kn) time.

- Larger universes?
- Theorem [Han and Thorup 2002]. We can sort n integers in O(n \log \log n) time or \(O(n (\log \log n)^{1/2})\) expected time.

Suffix Sorting

- Suffix sorting. Given string S of length n over alphabet \(\Sigma\), compute the sorted lexicographic order of all suffixes of S.
- For simplicity assume \(|\Sigma| = O(n)\)

Solution 1: Radix Sort

- Radix Sort.
 - Generate all suffixes (pad with $).

 yabbadabbado$
 abbadabbado$
 abbabbadabado$
 abadabado$
 badabbado$
 bbadabado$

- Time. \(O(n^2)\)
Solution 2: Prefix Doubling

- Prefix doubling [Manber and Myers 1990]. Sort substrings (padded with $) of lengths 1, 2, 4, 8, ..., n. Each step uses radix sort on pair from previous step.

5	Y	6	51	Ya	10	84	Yabb
4	a	1	12	Ab	1	13	Abba
3	b	2	22	Bb	6	42	Bbad
2	a	3	21	Ba	4	35	Bada
1	2	3	21	Ad	2	21	Adab
Y	5	51	Da	7	54	Dabb	
1	a	1	12	Ab	1	13	Abba
2	b	4	22	Bb	6	42	Bbad
2	a	3	21	Ba	5	35	Bada
1	2	3	21	Ad	3	27	Adob
3	d	6	34	Do	8	60	Dob$
4	o	7	40	Do$	9	70	Dob$
0	3	0	00	D$	0	00	D$

- Time. O(n log n)

Solution 3: Difference Cover Sampling

- DC3 Algorithm [Karkkainen et al. 2003]. Sort suffixes in three steps:
 - Step 1. Sort sample suffixes.
 - Sample all suffixes starting at positions $i = 1 \mod 3$ and $i = 2 \mod 3$.
 - Recursively sort sample suffixes.
 - Step 2. Sort non-sample suffixes.
 - Sort the remaining suffixes (starting at positions $i = 0 \mod 3$).
 - Step 3. Merge.
 - Merge sample and non-sample suffixes.

Step 1: Sort Sample Suffixes

Step 1: Sort Sample Suffixes
Step 1: Sort Sample Suffixes

Step 2: Sort Non-Sample Suffixes
Step 3: Merge

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>y</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>o</td>
<td>d</td>
<td>o</td>
</tr>
<tr>
<td>5</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>7</td>
<td>o</td>
<td>b</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>b</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>
Solution 3: Difference Cover Sampling

- DC3 Algorithm. Sort suffixes in three steps:
 - Step 1. Sort sample suffixes.
 - Sample all suffixes starting at positions $i = 1 \mod 3$ and $i = 2 \mod 3$. $O(n)$
 - Recursively sort sample suffixes. $T(2n/3)$
 - Step 2. Sort non-sample suffixes.
 - Sort the remaining suffixes (starting at positions $i = 0 \mod 3$). $O(n)$
 - Step 3. Merge.
 - Merge sample and non-sample suffixes. $O(n)$
 - $T(n) =$ time to suffix sort a string of length n over alphabet of size n

- Time. $T(n) = T(2n/3) + O(n) = O(n)$

Solution 3: Difference Cover Sampling

- Theorem. We can suffix sort a string of length n over alphabet Σ of size n in time $O(n)$.
- Larger alphabets?
- Theorem. We can suffix sort a string of length n over alphabet Σ $O(sort(n, |\Sigma|))$ time.
- Bound is optimal.

Suffix Trees

- String Dictionaries
- Tries
- Suffix Trees
- Suffix Sorting