Weekplan: Suffix Trees
Philip Bille

References and Reading

[2] Scribe notes from MIT.

Exercises

1 Suffix Trees
Solve the following exercises.

1.1 [w] Draw the suffix tree T for the string cocoa$$. Write edge labels (substrings) and leaf labels (suffix number).

1.2 [w] Add string depth for each node in T. Verify that the length of the longest common prefix of suffixes cocoa and coa is the string depth of the NCA/LCA of the corresponding leaves in T.

2 [w] Substring Counting Let $S = s_0s_2\cdots s_{n-1}$ be a string of length n over an alphabet Σ. We are interested in a data structure for S that supports the following query.

- $\text{count}(P)$: return the number of occurrences of P in S.

Give a data structure that supports $\text{count}(P)$ queries efficiently.

3 Common Substrings and Repeats
Solve the following exercises. Assume you have an efficient black-box algorithm for computing the suffix tree of a string.

3.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the length of a longest substring of S that is a repeat.

3.2 Given strings S_1 and S_2 a longest common substring is a substring of both S_1 and S_2 of maximal length. Show how to efficiently compute the length of a longest common substring of S_1 and S_2.

4 Suffix Trees for Multiple Strings
The suffix tree for a set of strings S_1, \ldots, S_k of total length n over alphabet Σ is the compact trie of all suffixes of the strings $S_1s_1, S_2s_2, \ldots, S_k s_k$. Each s_i is a special character not in Σ. The label of a leaf is a pair (i, j) such that the string to (i, j) is suffix j of string S_i. Suppose you have an efficient black-box algorithm for computing the suffix tree of a single string. Show how to use this algorithm to construct the suffix tree for S_1, \ldots, S_k efficiently.

5 Restricted Suffix Search
Let S be a string of length n over alphabet Σ. Give an efficient data structure for S that supports the following query:

- $\text{rsearch}(P, i, j)$: report the starting positions of occurrences of string P in $S[i, j]$.
6 [w] **Prefix Doubling** Suffix sort cocoa using prefix doubling.

7 **Odd-Even Sampling** Suppose we modify the sampling of suffixes in the DC3 algorithm such that the sampled and non-sampled suffixes are those starting at even and odd positions, respectively. Determine if the algorithm still works, i.e., show that it still works or explain where it fails.

8 **Suffix Arrays** Let S be a string of length n. The *suffix array* SA of length $n + 1$ containing the left-to-right sequence of labels of leaves in the suffix tree. Given the SA and S show how to support search(P) for a string P of length m in time $O(m \log n + \text{occ})$.

9 **Approximate String Matching with Hamming Distance** The *Hamming distance* between two equal length strings S_1 and S_2 is the number of positions i such that $S_1[i] \neq S_2[i]$. Let P and S be strings over alphabet Σ of lengths m and n, respectively. Given a parameter k, show how to compute all ending positions of substrings in S whose Hamming distance to P is at most k. *Hint:* Longest common extensions.

10 **Suffix Tree Construction Bounds** Solve the following exercises.

10.1 [*] Show that any algorithm for suffix tree construction of a string of length n over an alphabet Σ must use $\Omega(\text{sort}(n, |\Sigma|))$ worst-case time. *Hint:* Show that an algorithm using $o(\text{sort}(n, |\Sigma|))$ time would lead to a contradiction.

10.2 [*] Suppose that we drop the requirement that sibling edges are sorted from left-to-right. Show how construct such a suffix tree in $O(n)$ expected time. *Hint:* hash.