Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

Range Reporting Problem

- 2D range reporting problem. Preprocess at set of points $P \subseteq \mathbb{R}^2$ to support
 - $\text{report}(x_1, y_1, x_2, y_2)$: Return the set of points in $R \cap P$, where R is rectangle given by (x_1, y_1) and (x_2, y_2).

Applications

- Relational databases. SELECT all employees between 60 and 70 years old with a monthly salary between 60000 and 80000 Dkr
Range Reporting

• Range reporting problem
• 1D range reporting
 • Range trees
• 2D range reporting
 • Range trees
 • Predecessor in nested sets
 • kD trees

1D Range Reporting

1D range reporting. Preprocess a set of n points P ∈ ℜ to support:

• report(x₁, x₂): Return the set of points in interval [x₁, x₂]
• Output sensitivity. Time should depend on the size of the output.

Simplifying assumption. Only comparison-based techniques (e.g. no hashing or bittricks).

Solutions?

Theorem. We can solve the 1D range reporting problem in:

• O(n) space.
• O(log n + occ) time for queries.
• O(n log n) preprocessing time.

Optimal in comparison-based model.

• Sorted array. Store P in sorted order.
• Report(x₁, x₂): Binary search for predecessor of x₁. Traverse array until > x₂.
• Time. O(log n + occ)
• Space. O(n)
• Preprocessing. O(n log n)
Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

2D Range Reporting

- **Goal.** 2D range reporting with
 - $O(n \log n)$ space and $O(\log n + \text{occ})$ query time or
 - $O(n)$ space and $O(n^{1/2} + \text{occ})$ query time.
- **Solution in 4 steps.**
 - Generalized 1D range reporting.
 - 2D range trees.
 - 2D range trees with bridges.
 - kD trees.

Generalized 1D Range Reporting

- **Data structure.**
 - 1D range tree T_x over x-coordinate
 - 1D range tree T_y over y-coordinate
- **Report(x_1, y_1, x_2, y_2):**
 - Compute all points R_x in x-range.
 - Compute all points R_y in y-range.
 - Return $R_x \cap R_y$
- **Time?**

2D Range Trees

- **Data structure.**
 - Perfectly balanced binary tree over x-coordinate.
 - Each node v stores array of points below v sorted by y coordinate.
- **Space.** $O(n) + O(n \log n) = O(n \log n)$.
- **Preprocessing time.** $O(n \log n)$
2D Range Trees

• Report\((x_1, y_1, x_2, y_2)\): Find paths to predecessor of \(x_1\) and successor of \(x_2\).
 • At each off-path node do 1D query on \(y\)-range.
 • Return union of results.
• Time.
 • Predecessor + successor: \(O(\log n)\)
 • < 2\log n 1D queries: \(O(\log n + \text{occ in subrange})\) time per query.
 • \(\Rightarrow\) total \(O(\log^2 n + \text{occ})\) time.

2D Range Reporting

• Theorem. We can solve the 2D range reporting problem in
 • \(O(n \log n)\) space.
 • \(O(\log^2 n + \text{occ})\) time for queries.
 • \(O(n \log n)\) preprocessing time.
• Challenge. Do we really need the \(\log^2 n\) term for queries? Can we get (optimal) \(O(\log n + \text{occ})\) instead?

Range Reporting

• Range reporting problem
• 1D range reporting
 • Range trees
• 2D range reporting
 • Range trees
• Predecessor in nested sets
 • \(kD\) trees

Predecessor in Nested Sets

• Predecessor problem in nested sets. Let \(S = (S_1, S_2, \ldots, S_k)\) be a family of sets from
 universe \(U\) such that \(U \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_k\).
 • predecessor\((x)\): return the predecessor of \(x\) in each of \(S_1, S_2, \ldots, S_k\).
Predecessor in Nested Sets

- **Goal.** Predecessor in nested sets with $O(n)$ space and $O(\log n + k)$ query time.
- **Solution in 3 steps.**
 - Sorted arrays. Slow and linear space.
 - Tabulation. Fast but too much space.
 - Sorted arrays with bridges. Fast and little space.

Solution 1: Sorted Arrays

- **Data structure.** Sorted array on $S_1 +$ each entry stores $k-1$ predecessors in S_2, \ldots, S_k.
- **Predecessor(x):** Binary search in S_1 array + report predecessors.
- **Time.** $O(\log n_1 + \log n_2 + \cdots + \log n_k) = O(k \log n)$
- **Space.** $O(n)$

Solution 2: Tabulation

- **Data structure.** Sorted array on $S_1 +$ each entry stores $k-1$ predecessors in S_2, \ldots, S_k.
- **Predecessor(x):** Binary search in S_1 array + report predecessors.
- **Time.** $O(\log n_1 + \log n_2 + \cdots + \log n_k) = O(k \log n)$
- **Space.** $O(nk)$

Solution 3: Sorted Arrays with Bridges

- **Data structure.** Sorted arrays for each set + bridges.
- **Predecessor(x):** Binary search in S_1 array + traverse bridges and report elements.
- **Time.** $O(\log n_1 + k) = O(\log n + k)$
- **Space.** $O(n)$

Challenge. Can we get the best of both worlds?
Predecessor in Nested Sets

- **Theorem.** We can solve the predecessor in nested sets problem in
 - \(O(n) \) space.
 - \(O(\log n + k) \) query time.
 - \(O(n \log n) \) preprocessing time.

- **Extensions.**
 - Predecessor \(\Rightarrow \) 1D range reporting.
 - More tricks \(\Rightarrow \) works for non-nested sets. Called fractional cascading.

- **Challenge.** How can we use predecessor in nested sets for 2D range reporting?

2D Range Reporting

- **Goal.** 2D range reporting in \(O(n \log n) \) space and \(O(\log n) \) time
- **Idea.** Consider node \(v \) with children \(v_l \) and \(v_r \).
 - Arrays at \(v \) and \(v \) are subsets of array at \(v \).
 - All searches in arrays during a query are on the same \(y \)-range.

- **Data structure.** 2D range tree with bridges.
 - Each point in array at \(v \) stores bridges to arrays in \(v_l \) and \(v_r \).
 - \text{Report}(x_1, y_1, x_2, y_2): As 2D range tree query
 - Binary search in root array + traverse bridges for remaining 1D queries.
 - \text{Time.} \(O(\log n + \text{occ}) \)
 - \text{Space.} \(O(n \log n) \)
 - \text{Preprocessing.} \(O(n \log n) \)
Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

kD Trees

- The 2D tree (k = 2).
 - A balanced binary tree over point set P.
 - Recursively partition P into rectangular regions containing (roughly) same number of points. Partition by alternating horizontal and vertical lines.
 - Each node in tree stores region and line.

 ![kD Tree Diagram](image)

- Space. O(n)
- Preprocessing. O(n log n)

kD Trees

- Report(x1, y1, x2, y2): Traverse 2D tree starting at the root. At node v:
 - Case 1. v is a leaf: report the unique point in region(v) if contained in range.
 - Case 2. region(v) is disjoint from range: stop.
 - Case 3. region(v) is contained in range: report all points in region(v).
 - Case 4. region(v) intersects range, and v is not a leaf. Recurse left and right.

 ![kD Trees Diagram](image)

- Time. O(n^{1/2})

kD trees

- Theorem. We can solve the 2D range reporting problem in
 - O(n) space
 - O(n^{1/2} + occ) time
 - O(n log n) preprocessing
2D Range Reporting

- **Theorem.** We can solve 2D range reporting in either
 - $O(n \log n)$ space and $O(\log n + occ)$ query time
 - $O(n)$ space and $O(n^{1/2} + occ)$ query time.
- **Extensions.**
 - More dimensions.
 - Inserting and deleting points.
 - Using word RAM techniques.
 - Other shapes (circles, triangles, etc.)

Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees