Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees
Range Reporting

- Range reporting problem
 - 1D range reporting
 - Range trees
 - 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees
Range Reporting Problem

• 2D range reporting problem. Preprocess a set of points \(P \subseteq \mathbb{R}^2 \) to support
 • \(\text{report}(x_1, y_1, x_2, y_2) \): Return the set of points in \(R \cap P \), where \(R \) is rectangle given by \((x_1, y_1)\) and \((x_2, y_2)\).
Applications

• **Relational databases.** SELECT all employees between 60 and 70 years old with a monthly salary between 60000 and 80000 DKr
Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees
1D Range Reporting

• 1D range reporting. Preprocess a set of n points $P \subseteq \mathbb{R}$ to support:
 • $\text{report}(x_1, x_2)$: Return the set of points in interval $[x_1, x_2]$

• Output sensitivity. Time should depend on the size of the output.

• Simplifying assumption. Only comparison-based techniques (e.g. no hashing or bittricks).

• Solutions?
1D Range Reporting

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>15</td>
<td>17</td>
<td>23</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>46</td>
<td>51</td>
<td>52</td>
<td>65</td>
</tr>
</tbody>
</table>

- **Sorted array.** Store P in sorted order.
- **Report**(x_1, x_2): Binary search for predecessor of x_1. Traverse array until > x_2.
- **Time.** $O(\log n + \text{occ})$
- **Space.** $O(n)$
- **Preprocessing.** $O(n \log n)$
1D Range Reporting

- **Theorem.** We can solve the 1D range reporting problem in
 - \(O(n)\) space.
 - \(O(\log n + \text{occ})\) time for queries.
 - \(O(n \log n)\) preprocessing time.
- Optimal in *comparison-based model*.
Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees
2D Range reporting

• **Goal.** 2D range reporting with
 • $O(n \log n)$ space and $O(\log n + occ)$ query time or
 • $O(n)$ space and $O(n^{1/2} + occ)$ query time.

• **Solution in 4 steps.**
 • Generalized 1D range reporting.
 • 2D range trees.
 • 2D range trees with **bridges**.
 • kD trees.
Generalized 1D Range Reporting

• Data structure.
 • 1D range tree T_x over x-coordinate
 • 1D range tree T_y over y-coordinate

• $\text{Report}(x_1, y_1, x_2, y_2)$:
 • Compute all points R_x in x-range.
 • Compute all points R_y in y-range.
 • Return $R_x \cap R_y$

• Time?
2D Range Trees

- **Data structure.**
 - Perfectly balanced binary tree over x-coordinate.
 - Each node v stores array of points below v sorted by y coordinate.
- **Space.** $O(n) + O(n \log n) = O(n \log n)$.
- **Preprocessing time.** $O(n \log n)$
2D Range Trees

• **Report**\((x_1, y_1, x_2, y_2)\): Find paths to predecessor of \(x_1\) and successor of \(x_2\).
 • At each **off-path node** do 1D query on \(y\)-range.
 • Return union of results.

• **Time.**
 • Predecessor + successor: \(O(\log n)\)
 • \(< 2\log n\) 1D queries: \(O(\log n + \text{occ in subrange})\) time per query.
 • \(\Rightarrow\) total \(O(\log^2 n + \text{occ})\) time.
2D Range Reporting

• **Theorem.** We can solve the 2D range reporting problem in
 • $O(n \log n)$ space.
 • $O(\log^2 n + \text{occ})$ time for queries.
 • $O(n \log n)$ preprocessing time.

• **Challenge.** Do we really need the $\log^2 n$ term for queries? Can we get (optimal) $O(\log n + \text{occ})$ instead?
Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees
Predecessor problem in nested sets. Let $S = \{S_1, S_2, \ldots, S_k\}$ be a family of sets from universe U such that $U \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_k$.

- predecessor(x): return the predecessor of x in each of S_1, S_2, \ldots, S_k.

$|S_i| = n_i$ and $n_1 + n_2 + \cdots + n_k = n$
Predecessor in Nested Sets

• **Goal.** Predecessor in nested sets with $O(n)$ space and $O(\log n + k)$ query time.

• **Solution in 3 steps.**
 - **Sorted arrays.** Slow and linear space.
 - **Tabulation.** Fast but too much space.
 - **Sorted arrays with bridges.** Fast and little space.
Solution 1: Sorted Arrays

- **Data structure.** Sorted arrays for each set.
- **Predecessor(x):** Binary search in each array.
- **Time.** $O(\log n_1 + \log n_2 + \cdots + \log n_k) = O(k \log n)$
- **Space.** $O(n)$
Solution 2: Tabulation

- **Data structure.** Sorted array on S_1 + each entry stores $k-1$ predecessors in S_2, \ldots, S_k.
- **Predecessor(x):** Binary search in S_1 array + report predecessors.
- **Time.** $O(\log n_1 + k) = O(\log n + k)$
- **Space.** $O(nk)$
- **Challenge.** Can we get the best of both worlds?
Data structure. Sorted arrays for each set + bridges.

Predecessor(x): Binary search in S_1 array + traverse bridges and report elements.

Time. $O(\log n_1 + k) = O(\log n + k)$

Space. $O(n)$
Predecessor in Nested Sets

• **Theorem.** We can solve the predecessor in nested sets problem in
 • $O(n)$ space.
 • $O(\log n + k)$ query time.
 • $O(n \log n)$ preprocessing time.

• **Extensions.**
 • Predecessor \Rightarrow 1D range reporting.
 • More tricks \Rightarrow works for non-nested sets. Called **fractional cascading**.

• **Challenge.** How can we use predecessor in nested sets for 2D range reporting?
2D Range Reporting

- **Goal.** 2D range reporting in $O(n \log n)$ space and $O(\log n)$ time
- **Idea.** Consider node v with children v_l and v_r.
 - Arrays at v_l and v_r are subsets of array at v.
 - All searches in arrays during a query are on the same y-range.
2D Range Reporting

- **Data structure.** 2D range tree with bridges.
 - Each point in array at v stores bridges to arrays in vₐ and vₐ₊₁.
- **Report(x₁, y₁, x₂, y₂):** As 2D range tree query
 - Binary search in root array + traverse bridges for remaining 1D queries.
- **Time.** $O(\log n + \text{occ})$
- **Space.** $O(n \log n)$
- **Preprocessing.** $O(n \log n)$
2D Range Reporting

• **Theorem.** We can solve the 2D range reporting problem in
 • $O(n \log n)$ space
 • $O(\log n + \text{occ})$ time for queries.
 • $O(n \log n)$ preprocessing time.

• What can we do with only linear space?
Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees
kD Trees

• The 2D tree \((k = 2)\).

 • A balanced binary tree over point set \(P\).

 • Recursively partition \(P\) into rectangular regions containing (roughly) same number of points. Partition by alternating horizontal and vertical lines.

 • Each node in tree stores region and line.

• Space. \(O(n)\)

• Preprocessing. \(O(n \log n)\)
kD Trees

- **Report**(x₁, y₁, x₂, y₂): Traverse 2D tree starting at the root. At node v:
 - **Case 1.** v is a leaf: report the unique point in region(v) if contained in range.
 - **Case 2.** region(v) is disjoint from range: stop.
 - **Case 3.** region(v) is contained in range: report all points in region(v).
 - **Case 4.** region(v) intersects range, and v is not a leaf. Recurse left and right.

- **Time.** O(n^{1/2})
kD trees

• **Theorem.** We can solve the 2D range reporting problem in
 • $O(n)$ space
 • $O(n^{1/2} + \text{occ})$ time
 • $O(n \log n)$ preprocessing
2D Range Reporting

• **Theorem.** We can solve 2D range reporting in either
 • $O(n \log n)$ space and $O(\log n + \text{occ})$ query time
 • $O(n)$ space and $O(n^{1/2} + \text{occ})$ query time.

• **Extensions.**
 • More dimensions.
 • Inserting and deleting points.
 • Using word RAM techniques.
 • Other shapes (circles, triangles, etc.)
Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees