Level Ancestor

- Level Ancestor Problem
- Trade-offs
Level Ancestor

• Level Ancestor Problem
• Trade-offs
Level Ancestor

- **Level ancestor problem.** Preprocess rooted tree T with n nodes to support
 - $\text{LA}(v,k)$: return the kth ancestor of node v.

![Tree Diagram]

$\text{LA}(v,5) = u$
Level Ancestor

- Applications.
 - Basic primitive for navigating trees (any hierarchical data).
 - Illustration of wealth of techniques for trees.
 - Path decompositions.
 - Tree decomposition.
 - Tree encoding and tabulation.
Level Ancestor

- Level Ancestor Problem
- Trade-offs
Level Ancestor

- Solutions?
Level Ancestor

• **Goal.** Linear space and constant time.
• **Solution in 7 steps (!).**
 • No data structure. Very slow, little space
 • Direct shortcuts. Very fast, lot of space.
 •
 • Ladder decomposition + jump pointers + top-bottom decomposition. Very fast, little space.
Solution 1: No Data Structure

- **Data structure.** Store tree T (using pointers).
- **$LA(v,k)$:** Walk up.
- **Time.** $O(n)$
- **Space.** $O(n)$
Solution 2: Direct Shortcuts

- **Data structure.** Store each root-to-leaf in array.
- **LA(v,k):** Jump up.
- **Time.** $O(1)$
- **Space.** $O(n^2)$
Solution 3: Jump Pointers

- **Data structure.** For each node v, store pointers to ancestors at distance 1, 2, 4, ..
- **$LA(v, k)$:** Jump to most distant ancestor no further away than k. Repeat.
- **Time.** $O(\log n)$
- **Space.** $O(n \log n)$
Solution 4: Long Path Decomposition

- Long path decomposition.
 - Find root-to-leaf path p of maximum length.
 - Recursively apply to subtrees hanging of p.
- Lemma. Any root-to-leaf path passes through at most $O(n^{1/2})$ long paths.
- Longest paths partition $T \Rightarrow$ total length of all longest paths is $< n$
Solution 4: Long Path Decomposition

• **Data structure.** Store each long path in array.
• **LA(v,k):** Jump to kth ancestor or root of long path. Repeat.
• **Time.** $O(n^{1/2})$
• **Space.** $O(n)$
Solution 5: Ladder Decomposition

- Ladder decomposition.
 - Compute long path decomposition.
 - Double each long path.
- Lemma. Any root-to-leaf path passes through at most $O(\log n)$ ladders.
- Total length of ladders is $< 2n.$
Solution 5: Ladder Decomposition

- **Data structure.** Store each ladder in array.
- **LA(v,k):** Jump to kth ancestor or root of ladder. Repeat.
- **Time.** $O(\log n)$
- **Space.** $O(n)$
Solution 6: Ladder Decomposition + Jump Pointers

• **Data structure.** Ladder decomposition + Jump pointers.

• **LA(v,k):**
 • Jump to most distant ancestor not further away than k using jump pointer.
 • Jump to kth ancestor using ladder.

• **Time.** $O(1)$

• **Space.** $O(n) + O(n \log n) = O(n \log n)$
Solution 7: Top-Bottom Decomposition

- **Jump nodes.** Maximal deep nodes with $\geq 1/4 \log n$ descendants.
- **Top tree.** Jump nodes + ancestors.
- **Bottom trees.** Below top tree.

- Size of each bottom tree $< 1/4 \log n$.
- Number of jump nodes is at most $O(n/\log n)$.
Solution 7: Top-Bottom Decomposition

- Data structure for top.
 - Ladder decomposition + Jump pointers for jump nodes.
 - For each internal node pointer to some jump node below.
- \(LA(v,k) \) in top:
 - Follow pointer to jump node below \(v \).
 - Jump pointer + ladder solution.
- Time. \(O(1) \)
- Space. \(O(n) + (n/\log n \cdot \log n) = O(n) \)
Solution 7: Top-Bottom Decomposition

- **Tree encoding.** Encode each bottom tree B using balanced parentheses representation.
 - $< 2 \cdot \frac{1}{4} \log n = \frac{1}{2} \log n$ bits.
- **Integer encoding.** Encode inputs v and k to LA
 - $< 2 \cdot \log(\frac{1}{4} \log n) < 2 \log \log n$ bits.
- **LA encoding.** Concatenate into $\text{code}(B, v, k)$
 - $\Rightarrow |\text{code}(B, v, k)| < \frac{1}{2} \log n + 2 \log \log n$ bits.
Solution 7: Top-Bottom Decomposition

- Data structure for bottom.
 - Build table A s.t. $A[\text{code}(B, v, k)] = LA(v, k)$ in bottom tree B.
 - $LA(v,k)$ in bottom: Lookup in A.
 - Time. $O(1)$
 - Space. $2^{|\text{code}|} < 2^{1/2 \log n} + 2 \log \log n = n^{1/2} \log^2 n = o(n)$.
- Combine bottom and top data structures $\Rightarrow O(n)$ space and $O(1)$ query time.
Solution 7: Top-Bottom Decomposition

- **Theorem.** We can solve the level ancestor problem in linear space and constant query time.
Level Ancestor

- Level Ancestor Problem
- Trade-offs