Weekplan: Level Ancestor

Philip Bille
Inge Li Gørtz

References and Reading

[2] Scribe notes from MIT.

Exercises

1. **Direct shortcuts** Find a tree with n nodes such that the total size of all the arrays is $\Theta(n^2)$.

2. **[w] Find LCA** Perform LA($v, 11$) on the tree in Figure 1 using
 2.1 Jump pointers: show which jump pointers that are used.
 2.2 Long paths: Show which paths that are used.
 2.3 Ladders: Show which ladders that are used.

3. **Long Path Decomposition Bounds** Prove tight bounds for the number of long paths in a root-to-leaf path.
 3.1 Find a tree with n nodes such that the maximum number of long paths on a root-to-leaf path is $\Omega(\sqrt{n})$.
 3.2 [*] Show that any tree with n nodes has $O(\sqrt{n})$ long paths on a root-to-leaf path.

4. **Ladders** Let T be a tree of height h with n nodes. Solve the following exercises.
 4.1 Show that any root-to-leaf path can be covered by at most $O(\log h) = O(\log n)$ ladders.
 4.2 Ladders are obtained by *doubling* the long paths. Suppose we instead extend long paths by a factor $k > 2$. What is the effect?

5. **Few Leafs** Suppose that your input tree has no more than $n/\log n$ leaves. Suggest a (slightly) simplified solution to the level ancestor problem with linear space and constant query time.

6. **Heavy Paths** Let T be a tree with n nodes. Define $\text{size}(v)$ to be the number of descendant of v. Consider the following decomposition rule.
 - First find a root-to-leaf path as follows. Start at the root. At each node continue to a child of maximum size, until we reach a leaf. Remove the resulting path and recursively apply the rule to the remaining subtrees.

The resulting paths are called the *heavy paths* and the edges not on a heavy path are *light* edges. Solve the following exercises.

6.1 **[w]** Draw a not too small example of heavy paths in a tree.

6.2 Give an upper bound on the number of heavy paths on any root-to-leaf path in T.

7 Weighted Level Ancestor Let T be a tree with n nodes. Each edge is assigned a weight from \{0, \ldots, u - 1\}, and the weight of a node v is the sum of the weight of the edges on the path from the root to v. We want a data structure that supports the following operation on T. Given a leaf ℓ and an integer x define

- $WLA(\ell, x)$: return the deepest ancestor of ℓ of weight $\leq x$.

7.1 \([w]\) Give a simple data structure that supports WLA queries in $O(n^2)$ space and $O(\log \log u)$ time.

7.2 Give a data structure that supports WLA queries in $O(n)$ space and $O(\log n)$ time.

7.3 Consider the predecessor problem on n elements from a universe of size u. Any solution that uses $O(n)$ space requires at least $\Omega(\log \log u)$ query time. Can we hope to solve the weighted level ancestor problem in $O(n)$ space and $O(1)$ time?

7.4 \([\star]\) Give a data structure that supports WLA queries $O(n)$ space and $O(\log \log u)$ time. \textit{Hint:} Use heavy path decomposition.

8 Level Ancestor on Shallow Binary Trees Let T be a rooted, binary tree with n nodes of height $O(\log n)$. Give a simple and compact data structure that supports fast level ancestor queries (without using a level ancestor data structure). \textit{Hint:} A path in T can be encoded in a single word of memory.