Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Dictionaries

- **Dictionary problem.** Maintain a dynamic set of integers \(S \subseteq U \) subject to following operations
- **LOOKUP(x):** return true if \(x \in S \) and false otherwise.
- **INSERT(x):** set \(S = S \cup \{x\} \)
- **DELETE(x):** set \(S = S \setminus \{x\} \)

- **Universe size.** Typically \(|U| = 2^{64} \) or \(|U| = 2^{32} \) and \(|S| \ll |U| \).
- **Satellite information.** Information associated with each integer.
- **Goal.** A compact data structure with fast operations.

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Applications.

- Many!
- Key component in other data structures and algorithms.
Dictionaries

- Which solutions do we know?

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Chained Hashing

- Chained hashing [Dumey 1956].
 - Hash function. Pick some crazy, chaotic, random function h that maps U to $\{0, ..., m-1\}$, where $m = \Theta(n)$.
 - Initialize an array $A[0, ..., m-1]$.
 - $A[i]$ stores a linked list containing the keys in S whose hash value is i.

Chained Hashing

- Operations.
 - $LOOKUP(x)$: Compute $h(x)$. Scan through list for $h(x)$. Return true if x is in list and false otherwise.
 - $INSERT(x)$: Compute $h(x)$. Scan through list for $h(x)$. If x is in list do nothing. Otherwise, add x to the front of list.
 - $DELETE(x)$: Compute $h(x)$. Scan through list for $h(x)$. If x is in list remove it. Otherwise, do nothing.
- Time. $O(1 + \text{length of linked list for } h(x))$
Chained Hashing

- Hash functions.
 - $h(x) = x \text{ mod } 10$ is not very crazy, chaotic, or random.
 - For any fixed choice of h, there is a set whose elements all map to the same slot.
 - We end up with a single linked list.
 - How can we overcome this?

- Use randomness.
 - Assume the input set is random.
 - Choose the hash function at random.

Chained Hashing

- Random hash functions. Assume that:
 1. h is chosen uniformly at random among all functions from U to $\{0, \ldots, m-1\}$
 2. We can store h in $O(n)$ space.
 3. We can evaluate h in $O(1)$ time

- What is the expected length of the linked lists?

Theorem. We can solve the dictionary problem (under assumptions 1+2+3) in
- $O(n)$ space.
- $O(1)$ expected time per operation.
- Expectation is over the choice of hash function.
- Independent of the input set.

$$E(\text{length of linked list for } h(x)) = E(\{|y \in S \mid h(y) = h(x)\}|)$$
$$= E\left(\sum_{x \in S} 1 \quad \text{if } h(y) = h(x) \quad 0 \quad \text{if } h(y) \neq h(x)\right)$$
$$= \sum_{x \in S} E\left(\begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases}\right)$$
$$= \sum_{x \in S} \Pr(h(x) = h(y))$$
$$= 1 + \sum_{x \in S} \Pr(h(x) = h(y))$$
$$= 1 + \sum_{x \in S} \frac{1}{m}$$
$$= 1 + (n-1) \cdot \frac{1}{m} = O(1)$$
Chained Hashing

- Random hash functions assumptions.
 1. \(h \) is chosen uniformly at random among all functions from \(U \) to \(\{0, ..., m-1\} \)
 2. We can store \(h \) in \(O(n) \) space.
 3. We can evaluate \(h \) in \(O(1) \) time

- Random hash functions. Can we efficiently compute and store a random function?
 - We need \(\Theta(u \log m) \) bits to store an arbitrary function \(h: \{0, ..., u-1\} \to \{0, ..., m-1\} \)
 - We need a lot of random bits to generate the function.
 - We need a lot of time to generate the function.

- Do we need a truly random hash function?
- When did we use the fact that \(h \) was random in our analysis?

Chained Hashing

\[
E(\text{length of linked list for } h(x)) = E(\{y \in S \mid h(y) = h(x)\})
\]

\[
= \sum_{y \in S} \begin{cases}
1 & \text{if } h(y) = h(x) \\
0 & \text{if } h(y) \neq h(x)
\end{cases}
\]

\[
= \sum_{y \in S} \left(\Pr(h(x) = h(y)) \right)
\]

\[
= 1 + \sum_{y \in S(x)} \frac{1}{m} \quad \text{For all } x \neq y, \Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

\[
= 1 + (n-1) \cdot \frac{1}{m} = O(1)
\]

Universal Hashing

- Universal hashing [Carter and Wegman 1979].
 - Let \(H \) be a family of functions mapping \(U \) to \(\{0, ..., m-1\} \).
 - \(H \) is universal if for any \(x \neq y \) in \(U \) and \(h \) chosen uniformly at random in \(H \),
 \[\Pr(h(x) = h(y)) \leq 1/m \]
Universal Hashing

- Positional number systems. For integers \(x\) and \(p\), the base-\(p\) representation of \(x\) is \(x\) written in base \(p\).
- Example.
 \(\{10\}_7 = \{1010\}_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \)
 \(\{107\}_7 = \{212\}_2 = 2 \cdot 2^2 + 1 \cdot 2^1 + 2 \cdot 2^0 \)

Universal Hashing

- Lemma. Let \(p\) be a prime. For any \(a \in \{1, \ldots, p-1\}\) there exists a unique inverse \(a^{-1}\) such that \(a^{-1} \cdot a = 1 \mod p\). (\(\mathbb{Z}_p\) is a field)
- Example. \(p = 7\)
 \(\{10\}_7 = \{10\}_7 = \{212\}_2 = 2 \cdot 7^2 + 1 \cdot 7^1 + 2 \cdot 7^0 \)

\[
\begin{array}{ccccccc}
 a^{-1} & 1 & 2 & 3 & 4 & 5 & 6 \\
 a & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

Universal Hashing

- Goal. For random \(a = (a_1, a_2, \ldots, a_b)\), show that if \(x = (x_1, x_2, \ldots, x_b) \neq y = (y_1, y_2, \ldots, y_b)\) then
 \(\Pr[h(x) = h(y)] = \frac{1}{m} \leq \frac{1}{p} \)
- Hash function. Given a prime \(m < p < 2m\) and \(a = (a_1, a_2, \ldots, a_b)\), define
 \(h_a(x) = (x_1a_1 + x_2a_2 + \ldots + x_ba_b) \mod p \)
- Example.
 \(p = 7 \)
 \(a = (107)_7 = \{212\}_2 \)
 \(x = (214)_7 = \{424\}_2 \)
 \(h_a(x) = 2 \cdot 4 + 1 \cdot 2 + 2 \cdot 4 \mod 7 = 18 \mod 7 = 4 \)
 \(\text{Universal family.} \)
 \(H = \{h_a | a = (a_1, a_2, \ldots, a_b) \in \{0, \ldots, p-1\}\} \)
 \(\text{Choose random hash function from } H \sim \text{choose random } a. \)
 \(H \) is universal (analysis next).
 \(\text{O(1) time evaluation.} \)
 \(\text{O(1) space.} \)
 \(\text{Fast construction.} \)

\[
\begin{array}{ccccccc}
 a^{-1} & 1 & 2 & 3 & 4 & 5 & 6 \\
 a & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]
Universal Hashing

- **Lemma.** H is universal with $O(1)$ time evaluation and $O(1)$ space.

- **Theorem.** We can solve the dictionary problem (without special assumptions) in:
 - $O(n)$ space.
 - $O(1)$ expected time per operation (lookup, insert, delete).

Other universal families.

For prime $p > 0$, $a \in \{1, \ldots, p-1\}$, $b \in \{0, \ldots, p-1\}$

- Hash function from k-bit numbers to l-bit numbers. a is an odd k-bit integer.
 - l most significant bits of the k least significant bits of ax

\[h_{a,b}(x) = (ax + b \mod p) \mod m \]

\[H = \{ h_{a,b} \mid a \in \{1, \ldots, p-1\}, b \in \{0, \ldots, p-1\} \} \]

- Hash function from k-bit numbers to l-bit numbers. a is an odd k-bit integer.
 - l most significant bits of the k least significant bits of ax

\[h_a(x) = (ax \mod 2^k) \gg (k-l) \]

\[H = \{ h_a \mid a \text{ is an odd integer in } \{1, \ldots, 2^k - 1\} \} \]

Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing

Static Dictionaries and Perfect Hashing

- **Static dictionary problem.** Given a set $S \subseteq U = \{0, \ldots, u-1\}$ of size n for preprocessing support the following operation
 - lookup(x): return true if $x \in S$ and false otherwise.

 - As the dictionary problem with no updates (insert and deletes).
 - Set given in advance.
Static Dictionaries and Perfect Hashing

- **Dynamic solution.** Use chained hashing with a universal hash function as before \(\Rightarrow\) solution with \(O(n)\) space and \(O(1)\) expected time per lookup.

- Can we do better?

- **Perfect Hashing.** A **perfect hash function** for \(S\) is a collision-free hash function on \(S\).

- Perfect hash function in \(O(n)\) space and \(O(1)\) evaluation time \(\Rightarrow\) solution with \(O(n)\) space and \(O(1)\) worst-case lookup time.

- Do perfect hash functions with \(O(n)\) space and \(O(1)\) evaluation time exist for any set \(S\)?

Static Dictionaries and Perfect Hashing

- **Solution 1.** Collision-free but with too much space.

 - Use a universal hash function to map into an array of size \(n^2\). What is the expected total number of collisions in the array?

 \[
 E(#\text{collisions}) = E \left(\sum_{x,y \in S \times S} \begin{cases}
 1 & \text{if } h(y) = h(x) \\
 0 & \text{if } h(y) \neq h(x)
 \end{cases} \right)
 \]

 \[
 = \sum_{x,y \in S \times S} E \left(\begin{cases}
 1 & \text{if } h(y) = h(x) \\
 0 & \text{if } h(y) \neq h(x)
 \end{cases} \right)
 \]

 \[
 = \sum_{x,y \in S \times S} \Pr(h(x) = h(y)) = \left(\frac{n}{n^2} \right) \frac{1}{n} \leq \frac{n^2}{2} \cdot \frac{1}{n} = 1/2
 \]

 - With probability 1/2 we get perfect hashing function. If not perfect try again.

 \(\Rightarrow\) Expected number of trials before we get a perfect hash function is \(O(1)\).

 \(\Rightarrow\) For a static set \(S\) we can support lookups in \(O(1)\) worst-case time using \(O(n^2)\) space.

Static Dictionaries and Perfect Hashing

- **Goal.** Perfect hashing in linear space and constant worst-case time.

- **Solution in 3 steps.**

 - **Solution 1.** Collision-free but with too much space.

 - **Solution 2.** Many collisions but linear space.

 - **Solution 3:** FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution.

 - At level 1 use solution with lots of collisions and linear space.

 - Resolve collisions at level 1 with collision-free solution at level 2.

 - \(\text{lookup}(x)\): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.

 - \(E(#\text{collisions}) = E \left(\sum_{x,y \in S \times S} \begin{cases}
 1 & \text{if } h(y) = h(x) \\
 0 & \text{if } h(y) \neq h(x)
 \end{cases} \right) \)

 \[
 = \sum_{x,y \in S \times S} E \left(\begin{cases}
 1 & \text{if } h(y) = h(x) \\
 0 & \text{if } h(y) \neq h(x)
 \end{cases} \right)
 \]

 \[
 = \sum_{x,y \in S \times S} \Pr(h(x) = h(y)) = \left(\frac{n}{n^2} \right) \frac{1}{n} \leq \frac{n^2}{2} \cdot \frac{1}{n} = 1/2
 \]
Static Dictionaries and Perfect Hashing

- **Solution 3.** Two-level solution.
 - At level 1 use solution with lots of collisions and linear space.
 - Resolve each collisions at level 1 with collision-free solution at level 2.
 - lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.

- **Example.**
 - \(S = \{1, 16, 41, 54, 66, 96\} \)
 - Level 1 collision sets:
 - \(S_1 = \{1, 41\} \)
 - \(S_4 = \{54\} \)
 - \(S_6 = \{16, 66, 96\} \)
 - Level 2 hash info stored with subtable.
 - (size of table, multiplier \(a \), prime \(p \))

- **Time.** \(O(1) \)
- **Space?**

Static Dictionaries and Perfect Hashing

\(\#\text{collisions} = \sum \left(\frac{|S_i|}{2} \right) = O(n) \)

\[
\text{space} = O\left(n + \sum |S_i|^2\right) = O\left(n + \sum \left(|S_i| + 2 \left(\frac{|S_i|}{2} \right) \right)\right) \\
= O\left(n + \sum |S_i| + 2 \sum \left(\frac{|S_i|}{2} \right)\right) = O(n + n + 2n) = O(n)
\]

- **FKS scheme.**
 - \(O(n) \) space and \(O(n) \) expected preprocessing time.
 - Lookups with two evaluations of a universal hash function.

- **Theorem.** We can solve the static dictionary problem for a set \(S \) of size \(n \) in:
 - \(O(n) \) space and \(O(n) \) expected preprocessing time.
 - \(O(1) \) worst-case time per lookup.

- **Multilevel data structures.**
 - FKS is example of multilevel data structure technique. Combine different solutions for same problem to get an improved solution.

Hashing

- **Dictionaries**
- **Chained Hashing**
- **Universal Hashing**
- **Static Dictionaries and Perfect Hashing**