Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing
Hashing

• Dictionaries
 • Chained Hashing
 • Universal Hashing
• Static Dictionaries and Perfect Hashing
Dictionaries

• **Dictionary problem.** Maintain a dynamic set of integers $S \subseteq U$ subject to following operations
 • $\text{LOOKUP}(x)$: return true if $x \in S$ and false otherwise.
 • $\text{INSERT}(x)$: set $S = S \cup \{x\}$
 • $\text{DELETE}(x)$: set $S = S \setminus \{x\}$

• **Universe size.** Typically $|U| = 2^{64}$ or $|U| = 2^{32}$ and $|S| \ll |U|$.

• **Satellite information.** Information associated with each integer.

• **Goal.** A compact data structure with fast operations.
Dictionaries

- Applications.
 - Many!
 - Key component in other data structures and algorithms.
Dictionaries

- Which solutions do we know?
Hashing

• Dictionaries
• Chained Hashing
• Universal Hashing
• Static Dictionaries and Perfect Hashing
Chained Hashing

- Chained hashing [Dumey 1956].
 - **Hash function.** Pick some crazy, chaotic, random function h that maps U to \{0, ..., m-1\}, where $m = \Theta(n)$.
 - Initialize an array $A[0, ..., m-1]$.
 - $A[i]$ stores a linked list containing the keys in S whose hash value is i.
Chained Hashing

U = \{0, ..., 99\}
S = \{1, 16, 41, 54, 66, 96\}
h(x) = x \mod 10

• **Operations.**

 • **LOOKUP(x):** Compute h(x). Scan through list for h(x). Return true if x is in list and false otherwise.

 • **INSERT(x):** Compute h(x). Scan through list for h(x). If x is in list do nothing. Otherwise, add x to the front of list.

 • **DELETE(x):** Compute h(x). Scan through list for h(x). If x is in list remove it. Otherwise, do nothing.

 • **Time.** O(1 + length of linked list for h(x))
Chained Hashing

• Hash functions.
 • $h(x) = x \mod 10$ is not very crazy, chaotic, or random.
 • For any fixed choice of h, there is a set whose elements all map to the same slot.
 • \Rightarrow We end up with a single linked list.

• How can we overcome this?

• Use randomness.
 • Assume the input set is random.
 • Choose the hash function at random.
Chained Hashing

- **Random hash functions.** Assume that:
 1. h is chosen uniformly at random among all functions from U to \{0, …, m-1\}
 2. We can store h in $O(n)$ space.
 3. We can evaluate h in $O(1)$ time

- What is the expected length of the linked lists?
Chained Hashing

\[E(\text{length of linked list for } h(x)) = E(\{|y \in S \mid h(y) = h(x)\}|) \]

\[= E \left(\sum_{y \in S} \begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases} \right) \]

\[= \sum_{y \in S} E \left(\begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases} \right) \]

\[= \sum_{y \in S} \Pr(h(x) = h(y)) \]

\[= 1 + \sum_{y \in S \setminus \{x\}} \Pr(h(x) = h(y)) \]

\[= 1 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} \]

\[= 1 + (n - 1) \cdot \frac{1}{m} = O(1) \]
Theorem. We can solve the dictionary problem (under assumptions 1+2+3) in

- $O(n)$ space.
- $O(1)$ expected time per operation.

- Expectation is over the choice of hash function.
- Independent of the input set.
Chained Hashing

- **Random hash functions assumptions.**
 1. h is chosen uniformly at random among all functions from U to $\{0,\ldots, m-1\}$
 2. We can store h in $O(n)$ space.
 3. We can evaluate h in $O(1)$ time

- **Random hash functions.** Can we efficiently compute and store a random function?
 - We **need** $\Theta(u \log m)$ bits to store an arbitrary function $h: \{0,\ldots, u-1\} \rightarrow \{0,\ldots, m-1\}$
 - We **need** a lot of random bits to generate the function.
 - We **need** a lot of time to generate the function.

- Do we **need** a truly random hash function?
- When did we use the fact that h was random in our analysis?
Chained Hashing

\[E(\text{length of linked list for } h(x)) = E(\|\{y \in S \mid h(y) = h(x)\}\|) \]

\[= E \left(\sum_{y \in S} \begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases} \right) \]

\[= \sum_{y \in S} E \left(\begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases} \right) \]

\[= \sum_{y \in S} \Pr(h(x) = h(y)) \]

\[= 1 + \sum_{y \in S \setminus \{x\}} \Pr(h(x) = h(y))) \]

\[= 1 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} \quad \text{For all } x \neq y, \Pr(h(x) = h(y)) \leq \frac{1}{m} \]

\[= 1 + (n - 1) \cdot \frac{1}{m} = O(1) \]
Hashing

• Dictionaries
• Chained Hashing
• Universal Hashing
• Static Dictionaries and Perfect Hashing
Universal Hashing

- Universal hashing [Carter and Wegman 1979].
 - Let H be a family of functions mapping U to $\{0, ..., m-1\}$.
 - H is universal if for any $x \neq y$ in U and h chosen uniformly at random in H,
 \[\Pr(h(x) = h(y)) \leq 1/m \]
Universal Hashing

- **Positional number systems.** For integers x and p, the base-p representation of x is x written in base p.

- **Example.**

 - $(10)_{10} = (1010)_2 \ (1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)$

 - $(107)_{10} = (212)_7 \ (2 \cdot 7^2 + 1 \cdot 7^1 + 2 \cdot 7^0)$
Universal Hashing

- **Hash function.** Given a prime $m < p < 2m$ and $a = (a_1a_2...a_r)_p$, define
 \[h_a(x = (x_1x_2...x_r)_p) = a_1x_1 + a_2x_2 + ... + a_rx_r \mod p \]

- **Example.**
 - $p = 7$
 - $a = (107)_2 = (212)_7$
 - $x = (214)_2 = (424)_7$
 - $h_a(x) = 2 \cdot 4 + 1 \cdot 2 + 2 \cdot 4 \mod 7 = 18 \mod 7 = 4$

- **Universal family.**
 - $H = \{h_a \mid a = (a_1a_2...a_r)_p \in \{0, ..., p-1\}\}$
 - Choose random hash function from $H \sim$ choose random a.
 - H is universal (analysis next).
 - $O(1)$ time evaluation.
 - $O(1)$ space.
 - Fast construction.
Universal Hashing

• **Lemma.** Let p be a prime. For any $a \in \{1, \ldots, p-1\}$ there exists a unique inverse a^{-1} such that $a^{-1} \cdot a \equiv 1 \pmod{p}$. ($\mathbb{Z}_p$ is a field)

• **Example.** $p = 7$

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^{-1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^{-1}</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
```
Universal Hashing

- **Goal.** For random $a = (a_1a_2...a_r)_p$, show that if $x = (x_1x_2...x_r)_p \neq y = (y_1y_2...y_r)_p$ then $\Pr[h_a(x) = h_a(y)] \leq 1/m$

- $(x_1x_2...x_r)_p \neq (y_1y_2...y_r)_p \implies x_i \neq y_i$ for some i. Assume wlog. that $x_r \neq y_r$.

\[
\Pr(h_a((x_1\ldots x_r)_p)) = h_a((y_1\ldots , y_r)_p))
\]

\[
= \Pr(a_1x_1 + \cdots + a_rx_r \equiv a_1y_1 + \cdots + a_ry_r \pmod p)
\]

\[
= \Pr(a_rx_r - a_ry_r \equiv a_1y_1 - a_1x_1 + \cdots + a_{r-1}y_{r-1} - a_{r-1}x_{r-1} \pmod p)
\]

\[
= \Pr(a_r(x_r - y_r) \equiv a_1(y_1 - x_1) + \cdots + a_{r-1}(y_{r-1} - x_{r-1}) \pmod p)
\]

\[
= \Pr(a_r \equiv (a_1(y_1 - x_1) + \cdots + a_{r-1}(y_{r-1} - x_{r-1}))(x_r - y_r)^{-1} \pmod p)
\]

\[= \frac{1}{p} \leq \frac{1}{m}
\]

for any choice of $a_1, a_2, ..., a_{r-1}$, the RH defines a unique a_r that matches (uniqueness of inverses).

Of the p^r choices for $a_1, a_2, ..., a_r$ exactly p^{r-1} cause a collision \implies probability is $p^{r-1}/p^r = 1/p$
Universal Hashing

• **Lemma.** H is universal with $O(1)$ time evaluation and $O(1)$ space.

• **Theorem.** We can solve the dictionary problem (without special assumptions) in:
 • $O(n)$ space.
 • $O(1)$ expected time per operation (lookup, insert, delete).
Universal Hashing

- Other universal families.
 - For prime $p > 0$, $a \in \{1, \ldots, p-1\}$, $b \in \{0, \ldots, p-1\}$

$$h_{a,b}(x) = (ax + b \mod p) \mod m$$

$$H = \{h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\}\}$$

- Hash function from k-bit numbers to l-bit numbers. a is an odd k-bit integer.

$$h_a(x) = (ax \mod 2^k) \gg (k - l)$$

$$H = \{h_a \mid a \text{ is an odd integer in } \{1, \ldots, 2^k - 1\}\}$$
Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing
Static Dictionaries and Perfect Hashing

- **Static dictionary problem.** Given a set $S \subseteq U = \{0, ..., u-1\}$ of size n for preprocessing support the following operation
 - $\text{lookup}(x)$: return true if $x \in S$ and false otherwise.

- As the dictionary problem with no updates (insert and deletes).
- Set given in advance.
Static Dictionaries and Perfect Hashing

- **Dynamic solution.** Use chained hashing with a universal hash function as before \(\Rightarrow\) solution with \(O(n)\) space and \(O(1)\) expected time per lookup.

- Can we do better?

- **Perfect Hashing.** A perfect hash function for \(S\) is a collision-free hash function on \(S\).
 - Perfect hash function in \(O(n)\) space and \(O(1)\) evaluation time \(\Rightarrow\) solution with \(O(n)\) space and \(O(1)\) worst-case lookup time.
 - Do perfect hash functions with \(O(n)\) space and \(O(1)\) evaluation time exist for any set \(S\)?
Static Dictionaries and Perfect Hashing

- **Goal.** Perfect hashing in linear space and constant worst-case time.
- **Solution in 3 steps.**
 - **Solution 1.** Collision-free but with too much space.
 - **Solution 2.** Many collisions but linear space.
 - **Solution 3:** FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. Combines solution 1 and 2.
 - At level 1 use solution with lots of collisions and linear space.
 - Resolve collisions at level 1 with collision-free solution at level 2.
 - **lookup(x):** look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
Static Dictionaries and Perfect Hashing

• **Solution 1.** Collision-free but with too much space.
• Use a universal hash function to map into an array of size n^2. What is the expected total number of collisions in the array?

\[
E(\# \text{collisions}) = E \left(\sum_{x,y \in S, x \neq y} \begin{cases}
1 & \text{if } h(y) = h(x) \\
0 & \text{if } h(y) \neq h(x)
\end{cases} \right)
\]

\[
= \sum_{x,y \in S, x \neq y} E \left(\begin{cases}
1 & \text{if } h(y) = h(x) \\
0 & \text{if } h(y) \neq h(x)
\end{cases} \right)
\]

\[
= \sum_{x,y \in S, x \neq y} \Pr(h(x) = h(y)) = \binom{n}{2} \frac{1}{n^2} \leq \frac{n^2}{2} \cdot \frac{1}{n^2} = 1/2
\]

#distinct pairs universal hashing into n^2 range

• With probability $1/2$ we get perfect hashing function. If not perfect try again.
• \Rightarrow Expected number of trials before we get a perfect hash function is $O(1)$.
• \Rightarrow For a static set S we can support lookups in $O(1)$ worst-case time using $O(n^2)$ space.
Static Dictionaries and Perfect Hashing

- **Solution 2.** Many collisions but linear space.
- As solution 1 but with array of size n. What is the expected total number of collisions in the array?

\[
E(\#\text{collisions}) = E\left(\sum_{x,y \in S, x \neq y} \begin{cases}
1 & \text{if } h(y) = h(x) \\
0 & \text{if } h(y) \neq h(x)
\end{cases}\right)
\]

\[
= \sum_{x,y \in S, x \neq y} E\left(\begin{cases}
1 & \text{if } h(y) = h(x) \\
0 & \text{if } h(y) \neq h(x)
\end{cases}\right)
\]

\[
= \sum_{x,y \in S, x \neq y} \Pr(h(x) = h(y)) = \binom{n}{2} \frac{1}{n} \leq \frac{n^2}{2} \cdot \frac{1}{n} = \frac{1}{2} n
\]
Static Dictionaries and Perfect Hashing

- **Solution 3.** Two-level solution.
 - At level 1 use solution with lots of collisions and linear space.
 - Resolve each collisions at level 1 with collision-free solution at level 2.
 - `lookup(x)`: look-up in level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.

- **Example.**
 - `S = \{1, 16, 41, 54, 66, 96\}`
 - Level 1 collision sets:
 - `S_1 = \{1, 41\}`,
 - `S_4 = \{54\}`,
 - `S_6 = \{16, 66, 96\}`
 - Level 2 hash info stored with subtable.
 - (size of table, multiplier a, prime p)
 - **Time.** O(1)
 - **Space?**
Static Dictionaries and Perfect Hashing

• **Space.** What is the total size of level 1 and level 2 hash tables?

\[
\text{#collisions} = \sum \left(\frac{|S_i|}{2} \right) = O(n)
\]

\[
\text{space} = O \left(n + \sum_i |S_i|^2 \right) = O \left(n + \sum_i \left(|S_i| + 2 \left(\frac{|S_i|}{2} \right) \right) \right)
\]

\[
= O \left(n + \sum_i |S_i| + 2 \sum_i \left(\frac{|S_i|}{2} \right) \right) = O(n + n + 2n) = O(n)
\]

\[a^2 = a + 2 \left(\frac{a}{2} \right) \text{, for any integer } a \]
Static Dictionaries and Perfect Hashing

- **FKS scheme.**
 - $O(n)$ space and $O(n)$ expected preprocessing time.
 - Lookups with two evaluations of a universal hash function.

- **Theorem.** We can solve the static dictionary problem for a set S of size n in:
 - $O(n)$ space and $O(n)$ expected preprocessing time.
 - $O(1)$ worst-case time per lookup.

- **Multilevel data structures.**
 - FKS is example of multilevel data structure technique. Combine different solutions for same problem to get an improved solution.
Hashing

- Dictionaries
- Chained Hashing
- Universal Hashing
- Static Dictionaries and Perfect Hashing