External Memory

- Computationals models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm

Philip Bille

Computational Models

- iPad Air 2.
 - A8X Chip (triple-core ARMv8-A)
 - L1 cache: 64 KB instruction + 64 KB data per core
 - L2 cache: 2 MB
 - L3 cache: 4 MB
 - Memory: 2 GB
 - Disk: 16 GB SSD

- Word RAM model.
 - Infinite memory of cells.
 - Read/write a cell.
 - Arithmetic and boolean operations (+,-,=,<,>,&,...)
- Cost.
 - Time complexity = number of operations.
Computational Models

- I/O model [Aggarwal and Vitter 1988].
 - Limited memory + infinite disk
 - I/O operation = read/write consecutive block of B cells between memory and disk.
 - Arithmetic and boolean operations (+,-,/,=,<,>,&,|) on cells in memory.
- Cost.
 - I/Os = number of I/O operations.
 - Computation is free (!)

Cache-oblivious model [Frigo et al. 1999].
- Identical to I/O model except algorithms do not know M and B.
- Program in RAM model and analyze in I/O model.
- Assume optimal cache replacement strategy with full associativity.
- Properties.
 - Efficient on one level of cache ⇒ efficient on all levels cache.
 - Portable + self-tunable + simple.

External Memory

- Computational models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm

Shortest Paths in Implicit Grid Graphs

- Implicit grid graphs.
 - Let S and T be strings of length n.
 - The implicit grid graph for S and T is a 2D grid of (n+1) x (n+1) nodes.
 - For each node an edge to neighbors to E, S, SE.
 - E and S edges have weight 1.
 - SE edge (i-1,j-1) to (i, j) has weight 0 if S[i] = T[j] and 1 otherwise.
Shortest Paths in Implicit Grid Graphs

• Shortest paths in implicit grid graphs (SPIIG) problem.
 • Input. Strings S and T of length n.
 • Output. Length of shortest path from (0,0) to (n,n).

Shortest Paths in Implicit Grid Graphs

• Applications.
 • Shortest paths in implicit grid graphs is the edit distance problem.
 • With other edge weight functions we get longest common subsequence, sequence alignment, string similarity, approximate string matching, etc.

External Memory

• Computationals models
• Shortest path in implicit grid graphs
 • RAM algorithm
 • I/O algorithms
 • Cache-oblivious algorithm

RAM Algorithm

• How can we solve SPIIGG on a RAM?
• Dynamic programming algorithm.
 • Construct (n+1) x (n+1) matrix.
 • Fill in each entry in O(1) time in left-to-right top-to-bottom order.
• Time. O(n²)
• Space. O(n) (only store current + last row)
• Slightly faster solutions known [MP1980, Myers1999, CLZ2002, BFC2008]
External Memory

• Computationals models
• Shortest path in implicit grid graphs
 • RAM algorithm
 • I/O algorithms
 • Cache-oblivious algorithm

External Memory Algorithms

• Goal. Efficient external memory algorithms.
 • I/O model.
 • Solution 1. Converted RAM algorithm
 • Solution 2. Table partitioning
 • Cache-oblivious model.
 • Solution 3. Recursive table partitioning

Solution 1. Converted RAM Algorithm

• Strings S and T stored consecutively in n/B blocks on disk.

 • Algorithm.
 • Do as RAM algorithm. Read and write blocks as necessary.
 • I/Os. O(n²/B).

Solution 2. Table Partitioning

• Divide into subtables with overlapping boundaries.

 • Algorithm. Process subtables from left-to-right, top-to-bottom order. For each subtable:
 • Read corresponding substrings and input boundary into internal memory
 • Fill in subtable using RAM algorithm.
 • Write output boundary to disk.
How to choose subtable size?
- Make subtable $dM \times dM$ for $d < 1$ such that substrings + input boundary + output boundary + space for internal memory algorithm on subtable $< M$.

Number of subtables = $O(n^2/M^2)$.

I/Os per subtable = $O(M/B)$.

$\Rightarrow O(n^2/M^2 \cdot M/B) = O(n^2/MB)$

Solution 2. Table Partitioning
- Theorem. We can solve SPIIGG in the I/O model in
 - $O(n^2/MB + n/B)$ I/Os
 - $O(n^2)$ time
 - $O(n)$ space

Solution 2. Table Partitioning
- Algorithm.
 - Divide table into 4 quadrants with overlapping boundaries.
 - Process quadrants from left-to-right, top-to-bottom order. For each quadrant:
 - Read corresponding substrings and input boundary.
 - Fill in quadrant recursively.
 - Write output boundary.

Solution 3. Recursive Table Partitioning
Solution 3. Recursive Table Partitioning

- I/Os.
- Define $IO(n)$ = number of I/Os to process a table of size $n \times n$
 - Case 1: $n \leq dM$ (substrings + boundaries + computation fit in internal mem)
 - $IO(n) = O(n/B)$
 - Case 2: $n > dM$?

Solution 3. Recursive Table Partitioning

- **Algorithm.**
 - Divide table into 4 quadrants with overlapping boundaries.
 - Process quadrants from left-to-right, top-to-bottom order. For each quadrant:
 - Read corresponding substrings and input boundary.
 - Fill in quadrant recursively.
 - Write output boundary.

Solution 3. Recursive Table Partitioning

- Case 1 + 2:

 $IO(n) = \begin{cases}
 O(n/B) & \text{if } n \leq dM \\
 4 \cdot IO(n/2) + O(n/B) & \text{if } n > dM
 \end{cases}$

 $\Rightarrow IO(n) = O(n^2/MB)$

Solution 3. Recursive Table Partitioning

- **Theorem.** We can solve SPIIGG in the cache-oblivious model in
 - $O(n^2/MB + n/B)$ I/Os
 - $O(n^2)$ time
 - $O(n)$ space
External Memory

- Computationals models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm