Reference Compression

Let R and S be strings over an alphabet Σ of length r and n, respectively. The string R contains at least one copy of each character in Σ. The reference parsing of S wrt. R parses S into phrases p_1, \ldots, p_k greedily from left-to-right as follows. Suppose that we have parsed the prefix $S[1, \ell - 1]$ into phrases $p_1, \ldots, p_i - 1$. To obtain p_i we find a longest substring of S starting at position ℓ that matches a substring of R. The reference compression consists of the string R and the sequence of phrases p_1, \ldots, p_k, where each phrase is encoded with its start position and end position in R. Thus the total size of the compressed data is $O(r + k)$. Solve the following exercises.

1. Let $R = \text{abbac}$ and $S = \text{abcbbabbaac}$. Show the parsing of S using the bar-notation (as in the slides) along with the encoding of each phrase.

2. Give an efficient encoding algorithm for reference compression.

3. Give an $O(r + k)$ space data structure that supports fast random access queries in S (see weekplan for definition of access queries).