Weekplan: Approximation Algorithms II

Inge Li Gørtz

References and Reading

1 \([w]\) \(k \)-center Run both \(k \)-center algorithms on the example below with \(k = 4 \). All edges have length 1.

![Example Graph](image)

2 The \(k \)-supplier problem The \(k \)-supplier problem is similar to the \(k \)-center problem, but the vertices are partitioned into suppliers \(F \subseteq V \) and customers \(C \subseteq V \). The goal is to find \(k \) suppliers such that the maximum distance from a customer to a supplier is minimized. Give a 3-approximation algorithm for the \(k \)-suppliers problem.

3 Metric \(k \)-clustering Give an 2-approximation algorithm for the following problem.

Let \(G = (V, E) \) be a complete undirected graph with edge costs satisfying the triangle inequality, and let \(k \) be a positive integer. The problem is to partition \(V \) into sets \(V_1, \ldots, V_k \) so as to minimize the costliest edge between two vertices in the same set, i.e., minimize

\[
\max_{1 \leq i \leq k, u, v \in V_i} c(u, v).
\]

4 Priority \(k \)-center Consider the following variant of the \(k \)-center problem, where the vertices have priorities: Each vertex have a priority, and we want to find a set of \(k \) centers so that the maximum prioritized distance of a vertex to its closest center is minimized. That is, the higher value priority a vertex has, the closer it should be to a center.

Formally, in the prioritized \(k \)-center problem we are given a complete graph \(G = (V, E) \) with a cost function on the edges \(d : E \to \mathbb{Q}^+ \) satisfying the triangle inequality, a priority function on vertices: \(p : V \to \mathbb{R}^+ \), and a positive integer \(k \). The problem is to find a set of centers \(C \subseteq V \) with \(|C| \leq k \) minimizing

\[
r(C) = \max_{v \in V} p(v) \cdot d(v, C),
\]

where

\[
d(v, C) = \min_{u \in C} d(v, u).
\]
The following algorithm for the prioritized k-center problem assumes we know the optimal radius r.

Algorithm 1 Prority-Center (G, r)

1. Set $S = V$ and $C = \emptyset$.
2. while $S \neq \emptyset$
3. Select the heaviest vertex $v \in S$ (the vertex with highest priority)
4. Set $C = C \cup \{v\}$
5. Remove all vertices u from S with $p(u) \cdot d(u, v) \leq 2r$ from v.
6. end while
7. Return C

4.1 Assume we know the optimum covering radius r. Let C be the set of centers computed by the algorithm $kCenter(G, r)$, let C^* be the set of optimal centers (each vertex is assigned to its closest center).

 (a) Consider an iteration of the algorithm and let v be the vertex chosen in this iteration. Let c^* be the center v is assigned to in the optimal solution. Let $z \in S$ be a vertex assigned to c^* in the optimal solution. Show that $p(z) \cdot d(z, v) \leq 2r$.

 (b) Show that at most one vertex from each cluster from C^* belongs to C.

4.2 Prove that Algorithm 1 is a 2-approximation algorithm for the prioritized k-center problem (assuming that we know the optimal covering radius r).

5 **Vertex cover** A vertex cover in a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ so that each edge has at least one end in S. In the cardinality vertex cover problem the goal is to find a vertex cover of the input graph $G = (V, E)$ of minimum size.

 A matching in a graph $G = (V, E)$ is subset of edges $M \subseteq E$ so that no two edges of M hare an endpoint. A maximal matching is a matching that is maximal under inclusion. That is, adding any edge from E to the maximal matching will cause two edges in M to share an endpoint.

 5.1 Show that a maximal matching can be computed in polynomial time.

 5.2 Show that the size of a maximal matching in a graph G is a lower bound on the size of the minimum vertex cover in G.

 5.3 Give a 2-approximation algorithm for cardinality vertex cover.