k-center
The k-center problem

- **Input.** An integer k and a complete, undirected graph $G=(V,E)$, with distance $d(i,j)$ between each pair of vertices $i,j \in V$.

- **d is a metric:**
 - $d(i,i) = 0$
 - $d(i,j) = d(j,i)$
 - $d(i,l) \leq d(i,j) + d(j,l)$

- **Goal.** Choose a set $S \subseteq V$, $|S| = k$, of k centers so as to minimize the maximum distance of a vertex to its closest center.

 $$S = \arg\min_{S \subseteq V, |S| = k} \max_{i \in V} d(i,S)$$

- **Covering radius.** Maximum distance of a vertex to its closest center.

![Graph with distances labeled]
k-center: Greedy algorithm

- **Greedy algorithm.**
 - Pick arbitrary \(i \) in \(V \).
 - Set \(S = \{i\} \)
 - while \(|S| < k \) do
 - Find vertex \(j \) farthest away from any cluster center in \(S \)
 - Add \(j \) to \(S \)

- Greedy is a 2-approximation algorithm:
 - polynomial time ✓
 - valid solution ✓
 - factor 2
k-center: analysis greedy algorithm

- r^* optimal radius.
- Show all vertices within distance $2r^*$ from a center.
- Consider optimal clusters. 2 cases.
 - Algorithm picked one center in each optimal cluster
 - distance from any vertex to its closest center $\leq 2r^*$ (triangle inequality)
 - Some optimal cluster does not have a center.
 - Some cluster have more than one center.
 - distance between these two centers $\leq 2r^*$.
 - when second center in same cluster picked it was the vertex farthest away from any center.
 - distance from any vertex to its closest center at most $2r^*$.
k-center
Bottleneck algorithm

- Assume we know the optimum covering radius r.
- **Bottleneck algorithm.**
 - Set $R := V$ and $S := \emptyset$.
 - while $R \neq \emptyset$ do
 - Pick arbitrary i in R.
 - Add j to S
 - Remove all vertices with $d(j,v) \leq 2r$ from R.

- Example: $k = 3. \ r = 4$.

![Graph example](image-url)
Analysis bottleneck algorithm

• r^* optimal radius.
• Covering radius is at most $2r^*$.
• Show that: We cannot pick more than k centers:
 • We can pick at most one in each optimal cluster:
 • Distance between two nodes in same optimal cluster $\leq 2r^*$
 • When we pick a center in a optimal cluster all nodes in same optimal cluster is removed.
Bottleneck algorithm

• Assume we know the optimum covering radius r.

• Example: k = 3. r = 4.

• Analysis.
 • Covering radius is at most 2.
 • Algorithm picks more than k centers ⇒ the optimum covering radius is > r.
 • If algorithm pick more than k centers then it picked more than one in some OPT cluster.
 • If r* ≤ r we can pick at most one in each optimum cluster.

• Can “guess” optimal covering radius (only a polynomial number of possible values).

\[
\begin{align*}
\text{Bottleneck algorithm} & \\
\text{• Assume we know the optimum covering radius r.} & \\
\text{• Example: } k = 3. \ r = 4. & \\
\text{• Analysis.} & \\
\text{ • Covering radius is at most 2.} & \\
\text{ • Algorithm picks more than k centers ⇒ the optimum covering radius is > r.} & \\
\text{ • If algorithm pick more than k centers then it picked more than one in some OPT cluster.} & \\
\text{ • If } r^* \leq r \text{ we can pick at most one in each optimum cluster.} & \\
\text{• Can “guess” optimal covering radius (only a polynomial number of possible values).} & \\
\end{align*}
\]
Analysis bottleneck algorithm

• r^* optimal radius.
• Can use algorithm to “guess” r^* (at most n^2 values).
• If algorithm picked more than k centers then $r^* > r$.
 • If algorithm picked more than k centers then it picked more than one in some optimal cluster.
 • Distance between two nodes in same optimal cluster $\leq 2r^*$
 • If more than one in some optimal cluster then $2r < 2r^*$.
Bottleneck algorithm

• Assume we don’t know the optimum covering radius r.
• Example: $k = 3$.
• Try with $r = 2$:
 • Still vertices left after picking 3 centers $\Rightarrow r^* > 2$.
Bottleneck algorithm

• Assume we don’t know the optimum covering radius r.
• Example: $k=3$.
• Try with $r=3$:

All vertices deleted after picking 3 centers

Know $r^* \geq 3$ (from last round).

Max distance from a vertex to a center is $2r = 6 \leq 2r^*$.
k-center: Inapproximability

- There is no α-approximation algorithm for the k-center problem for $\alpha < 2$ unless P=NP.

- **Proof.** Reduction from dominating set.

 - **Dominating set.** Given $G=(V,E)$ and k. Is there a (dominating) set $S \subseteq V$ of size k, such that each vertex is either in S or adjacent to a vertex in S?

 - Given instance of the dominating set problem construct instance of k-center problem:
 - Complete graph G' on V.
 - All edges from E has weight 1, all new edges have weight 2.
 - Radius in k-center instance 1 or 2.
 - G has an dominating set of size $k \iff$ opt solution to the k-center problem has radius 1.
 - Use α-approximation algorithm A:
 - $opt = 1 \implies A$ returns solution with radius at most $\alpha < 2$.
 - $opt = 2 \implies A$ returns solution with radius at least 2.
 - Can use A to distinguish between the 2 cases.