Approximation Algorithms

02282
Inge Li Gørtz

NP-hard problems: choose 2 of
- optimal
- polynomial time
- all instances

Approximation algorithms. Trade-off between time and quality.

Let $A(I)$ denote the value returned by algorithm A on instance I. Algorithm A is an α-approximation algorithm if for any instance I of the optimization problem:
- A runs in polynomial time
- A returns a valid solution
- $A(I) \leq \alpha \cdot OPT$, where $\alpha \geq 1$, for minimization problems
- $A(I) \geq \alpha \cdot OPT$, where $\alpha \leq 1$, for maximization problems

Load balancing

n jobs to be scheduled on m identical machines.
- Each job has a processing time t_j.
- Once a job has begun processing it must be completed.
- T_j, Load of machine j.

Goal. Schedule all jobs so as to minimize the maximum load (makespan):

$$\text{minimize } T = \max_{i=1..n} T_j$$

Scheduling on identical parallel machines

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple greedy (list scheduling)

- Simple greedy. Process jobs in any order. Assign next job on list to machine with smallest current load.
- The greedy algorithm above is a 2-approximation algorithm:
 - polynomial time ✓
 - valid solution ✓
 - factor 2

Approximation factor

- Lower bounds:
 - Each job must be processed:
 \[T^* \geq \max_j t_j \]
 - There is a machine that is assigned at least average load:
 \[T^* \geq \frac{1}{m} \sum_j t_j \]

Approximation factor

Longest processing time rule

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

- i: job finishes last.
- All other machines busy until start time s of i. (s = \(T_i - t_i\))
- Partition schedule into before and after s.
- After \(\leq T^*\):
 - Before:
 - All machines busy => total amount of work = \(m \cdot s\):
 \[m \cdot s \leq \sum_i t_i \implies s \leq \frac{1}{m} \sum_i t_i \leq T^* \]
 - Length of schedule \(\leq 2T^* \).
Longest processing time rule

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- LPT is a 3/2-approximation algorithm:
 - polynomial time ✓
 - valid solution ✓
 - factor 3/2

Traveling salesman problem

Longest processing time rule: factor 3/2

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume \(t_1 \geq \ldots \geq t_n \).
- Lower bound: If \(n > m \) then \(T^* \geq 2t_{m+1} \).
- Factor 3/2:
 - If \(m \leq n \) then optimal.
 - Before: \(T \leq T^* \).
 - After: job that finishes last.
 - \(t_i \leq t_{m+1} \leq T/2 \).
 - \(T \leq T^* + T/2 \leq 3/2 T^* \).
 - Tight?

Longest processing time rule: factor 4/3

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume \(t_1 \geq \ldots \geq t_n \).
- Assume wlog that smallest job finishes last.
- If \(t_n \leq T/3 \) then \(T \leq 4/3 T^* \).
- If \(t_n > T/3 \) then each machine can process at most 2 jobs in OPT.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.
- Theorem. LPT is a 4/3-approximation algorithm.
Traveling Salesman Problem (TSP)

- Set of cities \{1, \ldots, n\}
- \(c_{ij} \geq 0 \): cost of traveling from \(i \) to \(j \).
- \(c_{ij} \) a metric:
 - \(c_{ii} = 0 \)
 - \(c_{ij} = c_{ji} \)
 - \(c_{ij} \leq c_{ik} + c_{kj} \) (triangle inequality)
- Goal: Find a tour of minimum cost visiting every city exactly once.

Double tree algorithm

- MST is a lower bound on TSP.
 - Deleting an edge \(e \) from OPT gives a spanning tree.
 - OPT \(\geq \) OPT - \(c_e \) \(\geq \) MST.

- Eulerian graph
 - Graph Eulerian if there is a traversal of all edges visiting every edge exactly once.
 - G Eulerian iff G connected and all nodes have even degree.
 - Can construct Euler tour in polynomial time.
Double tree algorithm

- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour τ

Christofides’ algorithm

- Christofides’ algorithm
 - Compute MST T.
 - No need to double all edges:
 - Consider set O of all odd degree vertices in T.
 - Find minimum cost perfect matching M on O.
 - Matching: no edges share an endpoint.
 - Perfect: all vertices matched.
 - Perfect matching on O exists: Number of odd vertices in a graph is even.
 - $T + M$ is Eulerian (all vertices have even degree).
 - $O = \{\text{odd degree vertices in } T\}$.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour τ
 - Shortcut such that each vertex only visited once (τ')
Christofides’ algorithm

- Compute MST T.
- $O = \{\text{odd degree vertices in } T\}$.
- Compute minimum cost perfect matching M on O.
- Construct Euler tour τ
- Shortcut such that each vertex only visited once (τ')

Analysis of Christofides’ algorithm

- $\text{weight}(M) \leq \text{OPT}/2$.
- $\text{OPT}_O = \text{OPT}$ restricted to O.
- $\text{OPT}_O \leq \text{OPT}$.

$\text{length}(\tau') \leq \text{length}(\tau) = \text{weight}(T) + \text{weight}(M) \leq \text{OPT} + \text{weight}(M)$.

$\text{weight}(M) \leq \text{OPT}/2$.

$\text{OPT}_O = \text{OPT}$ restricted to O.

$\text{OPT}_O \leq \text{OPT}$.
• weight(M) ≤ OPT/2.
 • OPT_o = OPT restricted to O.
 • OPT_o ≤ OPT.
 • can partition OPT_o into two perfect matchings O_1 and O_2.
 • weight(M) ≤ \min(\text{cost}(O_1), \text{cost}(O_2)) ≤ OPT/2.
• length(t') ≤ length(t) = weight(T) + weight(M) ≤ OPT + OPT/2 = 3/2 OPT.
• Christofides' algorithm is a 3/2-approximation algorithm for TSP.