Approximation Algorithms

02282
Inge Li Gørtz
Approximation algorithms

- NP-hard problems: choose 2 of
 - optimal
 - polynomial time
 - all instances

- **Approximation algorithms.** Trade-off between time and quality.

 - Let $A(I)$ denote the value returned by algorithm A on instance I. Algorithm A is an α-approximation algorithm if for any instance I of the optimization problem:
 - A runs in polynomial time
 - A returns a valid solution
 - $A(I) \leq \alpha \cdot \text{OPT}$, where $\alpha \geq 1$, for minimization problems
 - $A(I) \geq \alpha \cdot \text{OPT}$, where $\alpha \leq 1$, for maximization problems
Load balancing
• n jobs to be scheduled on m identical machines.
• Each job has a processing time t_j.
• Once a job has begun processing it must be completed.
• T_j: Load of machine j.
• Goal. Schedule all jobs so as to minimize the maximum load (makespan):

$$\text{minimize } T = \max_{i=1\ldots n} T_j$$
• **Simple greedy.** Process jobs in any order. Assign next job on list to machine with smallest current load.

• The greedy algorithm above is a 2-approximation algorithm:
 • polynomial time ✓
 • valid solution ✓
 • factor 2
Approximation factor

• Lower bounds:
 • Each job must be processed:
 \[T^* \geq \max_j t_j \]
 • There is a machine that is assigned at least average load:
 \[T^* \geq \frac{1}{m} \sum_j t_j \]
• i: job finishes last.
• All other machines busy until start time s of i. ($s = T_i - t_i$)
• Partition schedule into before and after s.
• After $\leq T^*$.
• Before:
 • All machines busy \Rightarrow total amount of work $= m \cdot s$:

\[m \cdot s \leq \sum_i t_i \quad \Rightarrow \quad s \leq \frac{1}{m} \sum_i t_i \leq T^* \]

• Length of schedule $\leq 2T^*$.

Approximation factor
• *Longest processing time rule (LPT).* Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

LPT is a 3/2-approximation algorithm:
- polynomial time ✓
- valid solution ✓
- factor 3/2
Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

Assume $t_1 \geq \ldots \geq t_n$.

Lower bound: If $n > m$ then $T^* \geq 2t_{m+1}$.

Factor 3/2:

- If $m \leq n$ then optimal.
- Before $\leq T^*$
 - After: i job that finishes last.
 - $t_i \leq t_{m+1} \leq T^*/2$.
 - $T \leq T^* + T^*/2 \leq 3/2 T^*$.
- Tight?
• **Longest processing time rule (LPT).** Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

• Assume $t_1 \geq \ldots \geq t_n$.

• Assume wlog that smallest job finishes last.

• If $t_n \leq T^*/3$ then $T \leq 4/3 T^*$.

• If $t_n > T^*/3$ then each machine can process at most 2 jobs in OPT.

• **Lemma.** For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.

• **Theorem.** LPT is a 4/3-approximation algorithm.
Traveling salesman problem
• Set of cities \(\{1, \ldots, n\} \)
• \(c_{ij} \geq 0 \): cost of traveling from \(i \) to \(j \).
• \(c_{ij} \) a metric:
 • \(c_{ii} = 0 \)
 • \(c_{ij} = c_{ji} \)
 • \(c_{ij} \leq c_{ik} + c_{kj} \) (triangle inequality)
• Goal: Find a tour of minimum cost visiting every city exactly once.
Traveling Salesman Problem (TSP)

- Set of cities \{1,...,n\}
- \(c_{ij} \geq 0\): cost of traveling from i to j.
- \(c_{ij}\) a metric:
 - \(c_{ii} = 0\)
 - \(c_{ij} = c_{ji}\)
 - \(c_{ij} \leq c_{ik} + c_{kj}\)
- Goal: Find a tour of minimum cost visiting every city exactly once.
Double tree algorithm

- MST is a lower bound on TSP.
 - Deleting an edge e from OPT gives a spanning tree.
 - $\text{OPT} \geq \text{OPT} - c_e \geq \text{MST}$.

- Eulerian graph
 - Graph Eulerian if there is a traversal of all edges visiting every edge exactly once.
 - G Eulerian iff G connected and all nodes have even degree.
 - Can construct Euler tour in polynomial time.
Double tree algorithm

- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour τ
Double tree algorithm

- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour τ
Double tree algorithm

- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour τ
 - Shortcut τ such that each vertex only visited once (τ')
 - $\text{length}(\tau') \leq \text{length}(\tau) = 2 \cdot \text{weight}(T) \leq 2 \cdot \text{OPT}$.
- The double tree algorithm is a 2-approximation algorithm for TSP.
Christofides’ algorithm

• Christofides’ algorithm
 • Compute MST T.
 • No need to double all edges:
 • Consider set O of all odd degree vertices in T.
 • Find minimum cost perfect matching M on O.
 • Matching: no edges share an endpoint.
 • Perfect: all vertices matched.
 • Perfect matching on O exists: Number of odd vertices in a graph is even.
 • $T + M$ is Eulerian (all vertices have even degree).
Christofides’ algorithm

- Compute MST T.
- $O = \{\text{odd degree vertices in } T\}$.
- Compute minimum cost perfect matching M on O.
- Construct Euler tour τ
- Shortcut such that each vertex only visited once (τ')
Christofides’ algorithm

- Compute MST T.
- $O = \{\text{odd degree vertices in } T\}$.
- Compute minimum cost perfect matching M on O.
- Construct Euler tour τ.
- Shortcut such that each vertex only visited once (τ')
Christofides’ algorithm

- Christofides’ algorithm
 - Compute MST T.
 - $O = \{\text{odd degree vertices in } T\}$.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour τ
 - Shortcut such that each vertex only visited once (τ')
 - $\text{length}(\tau') \leq \text{length}(\tau) = \text{weight}(T) + \text{weight}(M) \leq \text{OPT} + \text{weight}(M)$.
Analysis of Christofides’ algorithm

- $\text{weight}(M) \leq \frac{\text{OPT}}{2}$.
 - $\text{OPT}_o = \text{OPT}$ restricted to O.
 - $\text{OPT}_o \leq \text{OPT}$.
Analysis of Christofides’ algorithm

- \text{weight}(M) \leq \text{OPT}/2.
 - \text{OPT}_o = \text{OPT} \text{ restricted to } O.
 - \text{OPT}_o \leq \text{OPT}.
Analysis of Christofides’ algorithm

- \(\text{weight}(M) \leq \text{OPT}/2. \)
 - \(\text{OPT}_O = \text{OPT} \) restricted to \(O \).
 - \(\text{OPT}_O \leq \text{OPT} \).
 - can partition \(\text{OPT}_O \) into two perfect matchings \(O_1 \) and \(O_2 \).
 - \(\text{weight}(M) \leq \min(\text{cost}(O_1), \text{cost}(O_2)) \leq \text{OPT}/2. \)
- \(\text{length}(\tau') \leq \text{length}(\tau) = \text{weight}(T) + \text{weight}(M) \leq \text{OPT} + \text{OPT}/2 = 3/2 \text{ OPT}. \)
- Christofides’ algorithm is a 3/2-approximation algorithm for TSP.