Weekplan: Suffix Trees

Philip Bille

References and Reading

[1] Linear work suffix array construction, J. Kärkkäinen, P. Sanders, S. Burkhardt, J. ACM, 2006.
[2] Scribe notes from MIT.
[3] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield
[4] On the sorting-complexity of suffix tree construction, M. Farach-Colton, P. Ferragina, S. Muthukrishnan, J. ACM, 2000

We recommend reading [1] and [2] in detail. [3] provides an extensive list of applications of suffix trees and [4] is the first suffix-tree construction algorithm matching the sorting time bound.

Exercises

1 Suffix Trees Solve the following exercises.
1.1 [w] Draw the suffix tree T for the string cocoa\$. Write edge labels (substrings) and leaf labels (suffix number).
1.2 [w] Add string depth for each node in T. Verify that the length of the longest common prefix of suffixes cocoa and coa is the string depth of the NCA/LCA of the corresponding leaves in T.

2 [w] Substring Counting Let $S=s_{0} s_{2} \cdots s_{n-1}$ be a string of length n over an alphabet Σ. We are interested in a data structure for S that supports the following query.

- count (P) : return the number of occurrences of P in S.

Give a data structure that supports count (P) queries efficiently.

3 Common Substrings and Repeats Solve the following exercises. Assume you have an efficient black-box algorithm for computing the suffix tree of a string.
3.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the length of a longest substring of S that is a repeat.
3.2 Given strings S_{1} and S_{2} a longest common substring is a substring of both S_{1} and S_{2} of maximal length. Show how to efficiently compute the length of a longest common substring of S_{1} and S_{2}.

4 Suffix Trees for Multiple Strings The suffix tree for a set of strings S_{1}, \ldots, S_{k} of total length n over alphabet Σ is the compact trie of all suffixes of the strings $S_{1} \$_{1}, S_{2} \$_{2}, \ldots, S_{k} \$_{k}$. Each $\$_{i}$ is a special character not in Σ. The label of a leaf is a pair (i, j) such that the string to (i, j) is suffix j of string S_{i}. Suppose you have an efficient black-box algorithm for computing the suffix tree of a single string. Show how to use this algorithm to construct the suffix tree for S_{1}, \ldots, S_{k} efficiently.

5 Restricted Suffix Search Let S be a string of length n over alphabet Σ. Give an efficient data structure for S that supports the following query:

- rsearch (P, i, j) : report the starting positions of occurrences of string P in $S[i, j]$.

6 [w] Prefix Doubling Suffix sort cocoa using prefix doubling.

7 Odd-Even Sampling Suppose we modify the sampling of suffixes in the DC3 algorithm such that the sampled and non-sampled suffixes are those starting at even and odd positions, respectively. Determine if the algorithm still works, i.e., show that it still works or explain where it fails.

8 Suffix Arrays Let S be a string of length n. The suffix array is the array $S A$ of length $n+1$ containing the left-to-right sequence of labels of leaves in the suffix tree. Given the $S A$ and S show how to support search (P) for a string P of length m in time $O(m \log n+o c c)$.

9 Approximate String Matching with Hamming Distance The Hamming distance between two equal length strings S_{1} and S_{2} is the number of positions i such that $S_{1}[i] \neq S_{2}[i]$. Let P and S be strings over alphabet Σ of lengths m and n, respectively. Given a parameter k, show how to compute all ending positions of substrings in S whose Hamming distance to P is at most k. Hint: Longest common extensions.

10 Suffix Tree Construction Bounds Solve the following exercises.
10.1 [*] Show that any algorithm for suffix tree construction of a string of length n over an alphabet Σ must use $\Omega(\operatorname{sort}(n,|\Sigma|))$ worst-case time. Hint: Show that an algorithm using o(sort $(n,|\Sigma|)$ time would lead to a contradiction.
10.2 [*] Suppose that we drop the requirement that sibling edges are sorted from left-to-right. Show how construct such a suffix tree in $O(n)$ expected time. Hint: hash.

