
Weekplan: Suffix Trees

Philip Bille

References and Reading

[1] Linear work suffix array construction, J. Kärkkäinen, P. Sanders, S. Burkhardt, J. ACM, 2006.

[2] Scribe notes from MIT.

[3] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield

[4] On the sorting-complexity of suffix tree construction, M. Farach-Colton, P. Ferragina, S. Muthukrishnan, J.
ACM, 2000

We recommend reading [1] and [2] in detail. [3] provides an extensive list of applications of suffix trees and [4]
is the first suffix-tree construction algorithm matching the sorting time bound.

Exercises

1 Suffix Trees Solve the following exercises.

1.1 [w] Draw the suffix tree T for the string cocoa$. Write edge labels (substrings) and leaf labels (suffix
number).

1.2 [w] Add string depth for each node in T . Verify that the length of the longest common prefix of suffixes
cocoa and coa is the string depth of the NCA/LCA of the corresponding leaves in T .

2 [w] Substring Counting Let S = s0s2 · · · sn−1 be a string of length n over an alphabet Σ. We are interested in
a data structure for S that supports the following query.

• count(P): return the number of occurrences of P in S.

Give a data structure that supports count(P) queries efficiently.

3 Common Substrings and Repeats Solve the following exercises. Assume you have an efficient black-box
algorithm for computing the suffix tree of a string.

3.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the
length of a longest substring of S that is a repeat.

3.2 Given strings S1 and S2 a longest common substring is a substring of both S1 and S2 of maximal length. Show
how to efficiently compute the length of a longest common substring of S1 and S2.

4 Suffix Trees for Multiple Strings The suffix tree for a set of strings S1, . . . , Sk of total length n over alphabet
Σ is the compact trie of all suffixes of the strings S1$1, S2$2, . . . , Sk$k. Each $i is a special character not in Σ. The
label of a leaf is a pair (i, j) such that the string to (i, j) is suffix j of string Si . Suppose you have an efficient
black-box algorithm for computing the suffix tree of a single string. Show how to use this algorithm to construct
the suffix tree for S1, . . . , Sk efficiently.

5 Restricted Suffix Search Let S be a string of length n over alphabet Σ. Give an efficient data structure for S
that supports the following query:

• rsearch(P, i, j): report the starting positions of occurrences of string P in S[i, j].

1

6 [w] Prefix Doubling Suffix sort cocoa using prefix doubling.

7 Odd-Even Sampling Suppose we modify the sampling of suffixes in the DC3 algorithm such that the sampled
and non-sampled suffixes are those starting at even and odd positions, respectively. Determine if the algorithm
still works, i.e., show that it still works or explain where it fails.

8 Suffix Arrays Let S be a string of length n. The suffix array is the array SA of length n + 1 containing the
left-to-right sequence of labels of leaves in the suffix tree. Given the SA and S show how to support search(P) for
a string P of length m in time O(m log n+ occ).

9 Approximate String Matching with Hamming Distance The Hamming distance between two equal length
strings S1 and S2 is the number of positions i such that S1[i] 6= S2[i]. Let P and S be strings over alphabet Σ of
lengths m and n, respectively. Given a parameter k, show how to compute all ending positions of substrings in S
whose Hamming distance to P is at most k. Hint: Longest common extensions.

10 Suffix Tree Construction Bounds Solve the following exercises.

10.1 [∗] Show that any algorithm for suffix tree construction of a string of length n over an alphabet Σ must
use Ω(sort(n, |Σ|)) worst-case time. Hint: Show that an algorithm using o(sort(n, |Σ|) time would lead to a
contradiction.

10.2 [∗] Suppose that we drop the requirement that sibling edges are sorted from left-to-right. Show how con-
struct such a suffix tree in O(n) expected time. Hint: hash.

2

