
Mandatory Exercise: Predecessor, RMQ and LCA

Philip Bille Inge Li Gørtz

1 Labeled Predecessor and First Covering Ancestor Consider the following two problems.

Labeled Predecessor Let S = {0, . . . , n − 1} be a set of integers. We say that S is labeled if each integer is
associated with a label from a set of labels L = {0, . . . , l − 1}. Given a labeled set S, an integer x , and a label `, a
labeled predecessor query is defined as follows.

• label-predecessor(x ,`): return the largest element in S with label ` that is smaller than x .

Given a labeled set S, the labeled predecessor problem is to preprocess S into a compact data structure that supports
labeled predecessor queries.

First Covering Ancestor Let T be a rooted tree with n nodes. We say that T is labeled if each leaf is associated
with a label from a set of labels L = {0, . . . , l − 1}. Given a node v ∈ T , the subtree rooted at v, denoted T (v), is
the tree consisting of v and all descendants of v. A node v ∈ T covers a label ` if T (v) contains a leaf labeled `.
Given a leaf v ∈ T and a label ` ∈ L, a first covering ancestor query is defined as follows.

• FCA(v, `): return the deepest ancestor a of v such that a covers `.

Given a labeled tree T , the first covering ancestor problem is to preprocess T into a compact data structure that
supports first covering ancestor queries.

Solve the following exercises.

1.1 Give a data structure for the labeled predecessor problem that answers queries in O(1) time and uses little
space. Hint: a good solution depends on both on the number of labels and n.

1.2 Give a data structure for the labeled predecessor problem that uses O(n) space and supports fast queries.

1.3 Give a linear-space data structure for the first covering ancestor problem that supports fast FCA queries.

Ignore preprocessing in all of the exercises.

1


