
Weekplan: Lempel-Ziv full-text indexing

Nicola Prezza

References and Reading

[1] Navarro, G., and Mäkinen, V. (2007). Compressed full-text indexes. ACM Computing Surveys (CSUR), 39(1)

[2] Prezza, N. (2016) Compressed Computation for Text Indexing. PhD thesis

[3] Kärkkäinen, J., and Ukkonen, E. (1996). Lempel-Ziv parsing and sublinear-size index structures for string
matching. In Proc. 3rd South American Workshop on String Processing (WSP’96).

[4] Kreft, S., and Navarro, G. (2013). On compressing and indexing repetitive sequences. Theoretical Computer
Science, 483, 115-133.

Notes: [1] and references therein is an excellent and comprehensive survey covering the subject of compressed
text indexing. [2] is my PhD thesis: here you find all the material covered in this lesson (and much more) down
to all details. [3] describes the first compressed index (LZ78), while [4] The first LZ77 index.

Exercises

1 LZ77 trie The LZ77 trie is the trie of all LZ77 phrases. Solve the following exercises:

1.1 Draw the LZ77 trie of T = ACGCGACACACACGGT GGGT$

1.2 Assuming you have access to the text T , design a data structure taking Θ(z) words of space representing the
LZ77 trie of T . The structure should support fast child operations (you can assume constant-size alphabet)

2 LZ77 sparse suffix tree The LZ77 sparse suffix tree is the path-compressed trie of all suffixes of
←−
T (T rever-

sed) that start at a LZ77 phrase boundaries (w.r.t. the LZ77 factorization of T).

2.1 Draw the LZ77 sparse suffix tree of T = ACGCGACACACACGGT GGGT$

2.2 Write on each explicit tree node N the lexicographic range of the suffixes under N

3 LZ search algorithm completeness Prove the following properties of the LZ77/78 parsings:

3.1 Every string appearing in the text has at least one primary occurrence

3.2 Let S = T[i, . . . , i +m− 1] be a secondary occurrence. Prove that, following backward the chain of copies
starting from S (i.e. source of the phrase containing S, source of the source, ...), we end up in a primary
occurrence T[i′, . . . , i′ +m− 1] = S (with i′ < i). Prove moreover that this occurrence is unique.

4 LZ77 text extraction Recall that the LZ77 variant with self-references is the one where we allow the source
of any phrase Z to (partially) overlap Z itself. Let h be the parse height of the LZ77 parse.

4.1 How big is h in the worst case if we allow self-references? and if we do not allow them?

4.2 Describe a data structure of Θ(z) words of space that permits to extract any text character in O(h log log n)
time. Show how to achieve the same task in O(h log z) time (this is faster if z� log n).

5 LZ78 self-index Show how to obtain a LZ78 self-index taking Θ(z log n) words of space and supporting
locate in O(m(m+ log z) + occ log n) time (i.e. the index must be as fast as the LZ78 full-text index)

1


