
Weekplan: Hashing

Philip Bille

References and Reading

[1] Notes from Aarhus, Peter Bro Miltersen.

[2] Scribe notes from MIT.

[3] Universal Classes of Hash Functions, J. Carter and M. Wegman, J. Comp. Sys. Sci., 1977.

[4] Storing a Sparse Table with O(1) Worst Case Access Time, M. Fredman, J. Komlos and E. Szemeredi, J.
ACM., 1984.

We recommend reading [1] and [2] in detail. [3] and [4] provide background on universal and perfect hashing.

Exercises

1 Basic Probability Theory Refresh Bonus In case your knowledge of probability theory is rusty. Solve the
following self-help exercises.

1.1 Prove linearity of expectation.

1.2 Prove that the expectation of the indicator function for h(x) = h(y) (1 if h(x) = h(y) and 0 otherwise) is
equal to the probability that h(x) = h(y).

1.3 Show that the expected number of trials to get a perfect hashing function using an array of size n2 is ≤ 2.

2 [w] Streaming Statistics An IT-security friend of yours wants a high-speed algorithm to count the number
of distinct incoming IP-addresses in his router to help detect denial of service attacks. Can you help him?

3 Dense Set Hashing A set S ⊆ U = {0, . . . , u− 1} is called dense if |S| = Θ(u). Suggest a simple and efficient
dictionary data structure for dense sets.

4 Multi-Set Hashing A multi-set is a set M , where each element may occur multiple times. Design an efficient
data structure supporting the following operations:

• add(x): Add an(other) occurrence of x to M .

• remove(x): Remove an occurrence of x from M . If x does not occur in M do nothing.

• report(x): Return the number of occurrences of x .

5 Linear Space Hashing The chained hashing solution for the dynamic dictionary problem presented assume
that m= Θ(n). Solve the following exercises.

5.1 What is the space complexity of chained hashing without this assumption?

5.2 Give a solution that achieves O(n) space and the same time complexities without assuming m= Θ(n). Hint:
Think dynamic tables.

1

6 Graph Adjacency Let G be a graph with n vertices and m edges. We want to represent G efficiently and
support the following operation.

• adjacent(v, w): Return true if nodes v are w are adjacent and false otherwise.

Solve the following exercises:

6.1 Analyse the space and query time in terms of n and m for the classic adjacency matrix and adjacency list
representation.

6.2 Design a data structure that improves both the adjacency matrix and adjacency list.

7 Lost Integer Puzzles Suppose that you receive a stream of n−1 distinct integers from the set {1, . . . , n}, i.e.,
the stream consists of all of {1, . . . , n} except a single missing integer. We want a space-efficient algorithm that
efficiently computes this integer during a single pass over the input stream. Solve the following exercises:

7.1 Show how to find the lost integer using O(n) space.

7.2 [∗] Show how to find the lost integer using O(1) space.

7.3 [∗∗] Suppose there are now two lost integers. Show how to find them using O(1) space.

2

