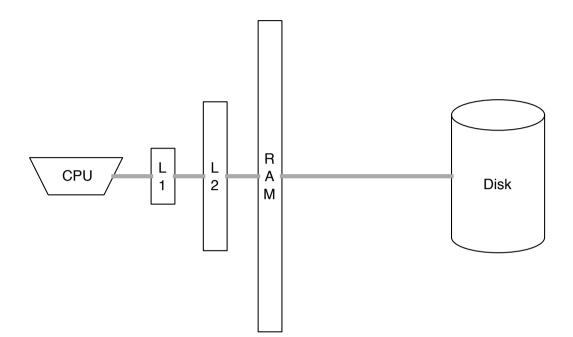
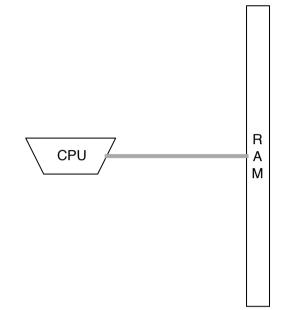
- Computationals models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm

Philip Bille

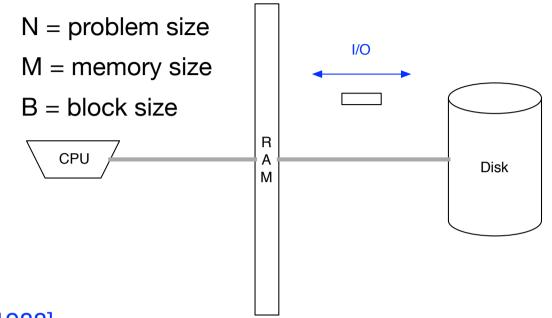
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm



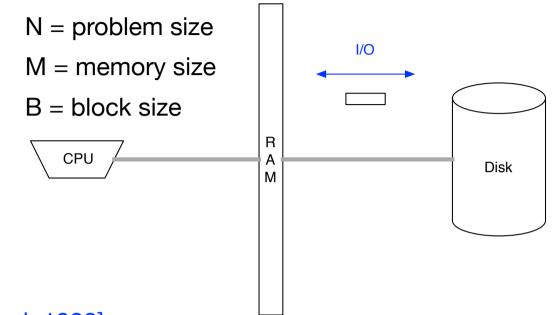
- iPad Air 2.
 - A8X Chip (triple-core ARMv8-A)
 - L1 cache: 64 KB instruction + 64 KB data per core
 - L2 cache: 2 MB
 - L3 cache: 4 MB
 - Memory: 2 GB
 - Disk: 16 GB SSD



- Word RAM model.
 - Infinite memory of cells.
 - Read/write a cell.
 - Arithmetic and boolean operations (+,-,/,=,<,>,&,|,...)
- Cost.
 - Time complexity = number of operations.



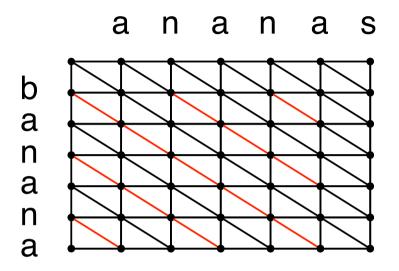
- I/O model [Aggarwal and Vitter 1988].
 - Limited memory + infinite disk
 - I/O operation = read/write consecutive block of B cells between memory and disk.
 - Arithmetic and boolean operations (+,-,/,=,<,>,&,|,...) on cells in memory.
- Cost.
 - I/Os = number of I/O operations.
 - Computation is free (!)



- Cache-oblivious model [Frigo et al. 1999].
 - Identical to I/O model except algorithms do not know M and B.
 - Program in RAM model and analyze in I/O model.
 - Assume optimal cache replacement strategy with full associativity.
- Properties.
 - Efficient on one level of cache \Rightarrow efficient on all levels cache.
 - Portable + self-tunable + simple.

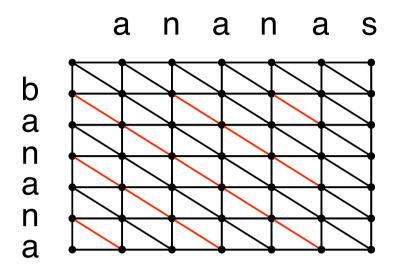
- Computationals models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm

Shortest Paths in Implicit Grid Graphs



- Implicit grid graphs.
 - Let S and T be strings of length n.
 - The implicit grid graph for S and T is A 2D grid of $(n+1) \times (n+1)$ nodes.
 - For each node an edge to neighbors to E, S, SE.
 - E and S edges have weight 1.
 - SE edge (i-1,j-1) to (i, j) has weight 0 if S[i] = T[j] and 1 otherwise.

Shortest Paths in Implicit Grid Graphs



- Shortest paths in implicit grid graphs (SPIIG) problem.
 - Input. Strings S and T of length n.
 - Output. Length of shortest path from (0,0) to (n,n).

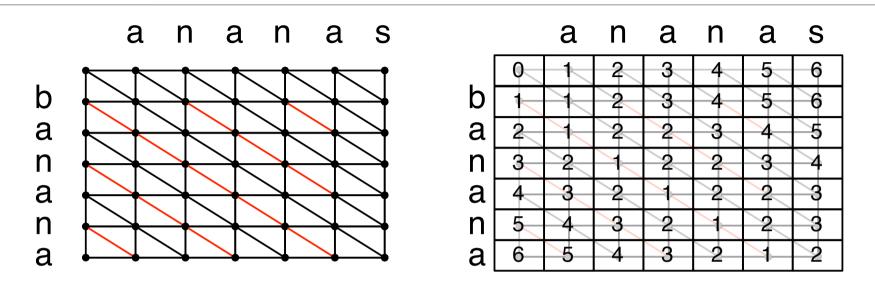
Shortest Paths in Implicit Grid Graphs

• Applications.

- Shortest paths in implicit grid graphs is the edit distance problem.
- With other edge weight functions we get longest common subsequence, sequence alignment, string similarity, approximate string matching, etc.

- Computationals models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm

RAM Algorithm



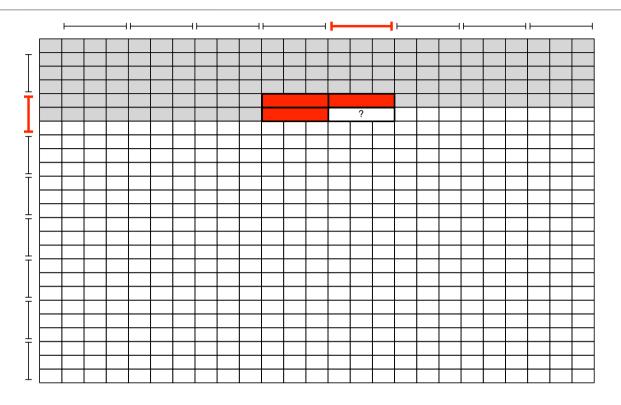
- How can we solve SPIIGG on a RAM?
- Dynamic programming algorithm.
 - Construct (n+1) x (n+1) matrix.
 - Fill in each entry in O(1) time in left-to-right top-to-bottom order.
- Time. O(n²)
- Space. O(n) (only store current + last row)
- Slightly faster solutions known [MP1980, Myers1999, CLZ2002, BFC2008]

- Computationals models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm

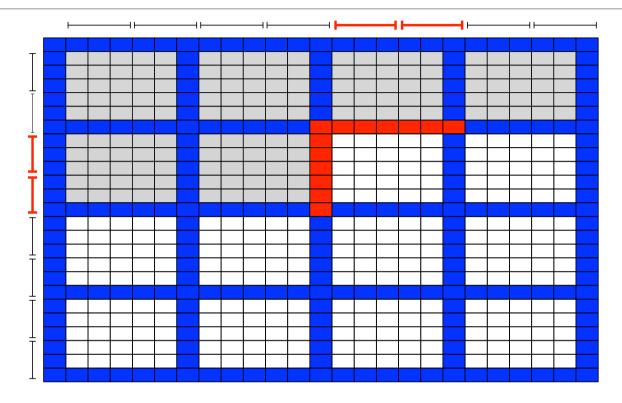
External Memory Algorithms

- Goal. Efficient external memory algorithms.
- I/O model.
 - Solution 1. Converted RAM algorithm
 - Solution 2. Table partitioning
- · Cache-oblivious model.
 - Solution 3. Recursive table partitioning

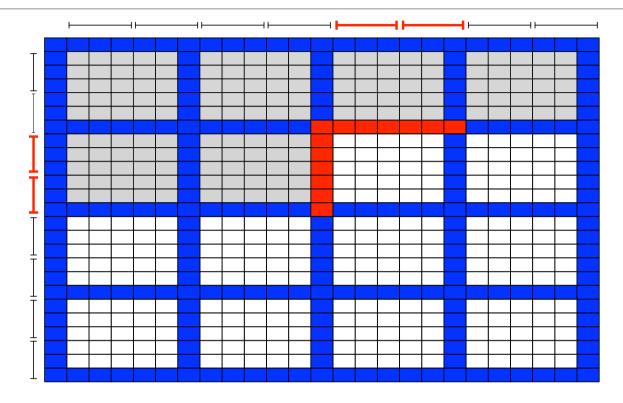
Solution 1. Converted RAM Algorithm



- Strings S and T stored consecutively in n/B blocks on disk.
- Algorithm.
 - Do as RAM algorithm. Read and write blocks as necessary.
- I/Os. O(n²/B).

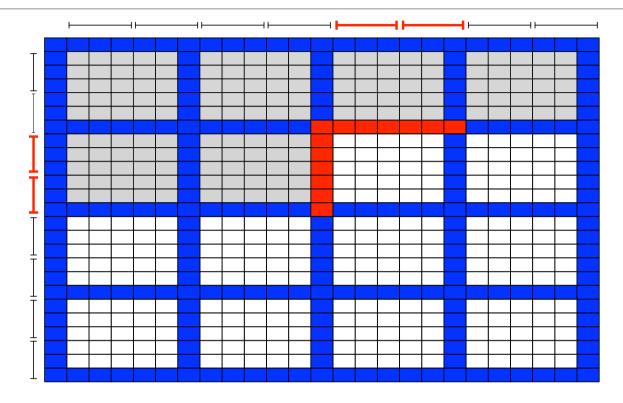


- Divide into subtables with overlapping boundaries.
- Algorithm. Process subtables from left-to-right, top-to-bottom order. For each subtable:
 - Read corresponding substrings and input boundary into internal memory
 - Fill in subtable using RAM algorithm.
 - Write output boundary to disk.

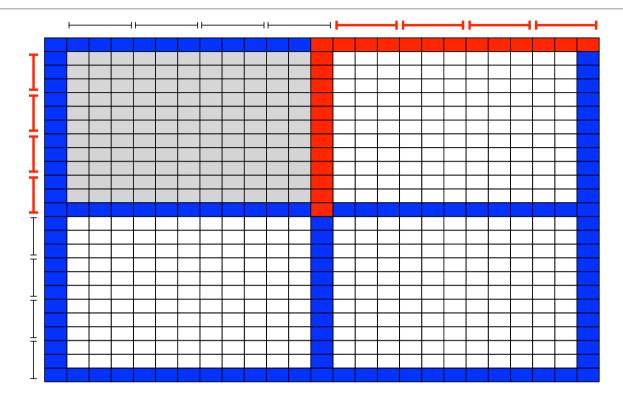


- How to choose subtable size?
- Make subtable dM x dM for d < 1 such that substrings + input boundary + output boundary + space for internal memory algorithm on subtable < M.
- I/Os.
 - Number of subtables = $O(n^2/M^2)$.
 - I/Os per subtable = O(M/B).
 - \Rightarrow O(n²/M² · M/B) = O(n²/MB)

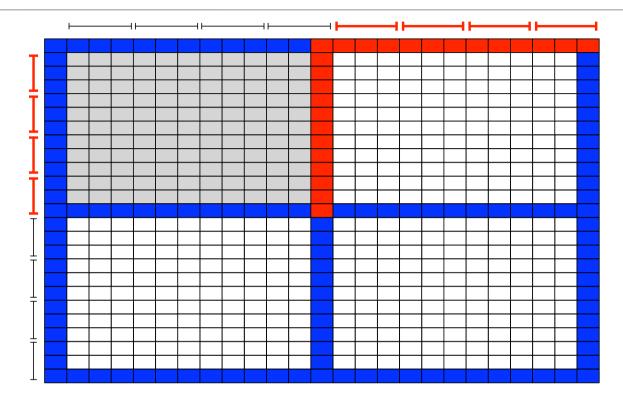
- Theorem. We can solve SPIIGG in the I/O model in
 - O(n²/MB + n/B) I/Os
 - O(n²) time
 - O(n) space



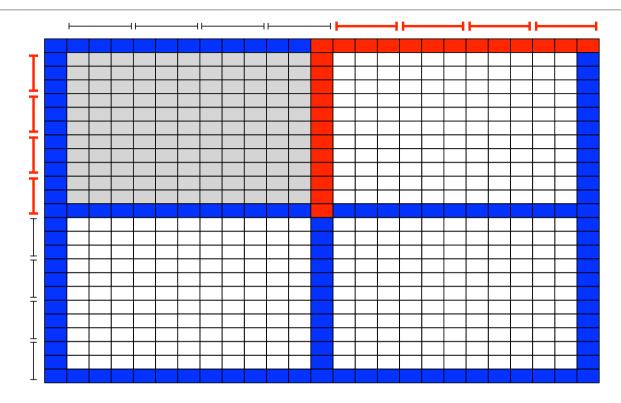
- How can we make solution 2 cache-oblivious?
- Challenge. We cannot use M and B.
- Idea. Use recursion to design algorithm that is good for all M and B.



- Algorithm.
- Divide table into 4 quadrants with overlapping boundaries.
- Process quadrants from left-to-right, top-to-bottom order. For each quadrant:
 - Read corresponding substrings and input boundary.
 - Fill in quadrant recursively.
 - Write output boundary.

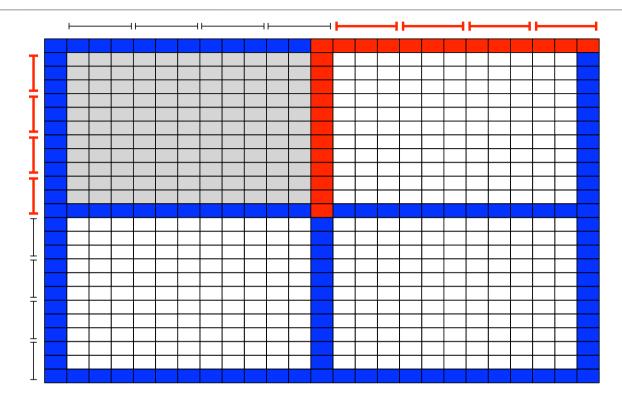


- I/Os.
- Define IO(n) = number of I/Os to process a table of size n x n
 - Case 1: $n \le dM$ (substrings + boundaries + computation fit in internal mem)
 - IO(n) = O(n/B)
 - Case 2: n > dM?



- Algorithm.
- Divide table into 4 quadrants with overlapping boundaries.

- O(1)
- Process quadrants from left-to-right, top-to-bottom order. For each quadrant:
 - Read corresponding substrings and input boundary.
 Fill in quadrant recursively.
 Write output boundary.
 O(n/B)



• Case 1 + 2:

$$IO(n) = \begin{cases} O(n/B) & \text{if } n \le dM \\ 4 \cdot IO(n/2) + O(n/B) & \text{if } n > dM \end{cases}$$

• \Rightarrow IO(n) = O(n²/MB)

- Theorem. We can solve SPIIGG in the cache-oblivious model in
 - O(n²/MB + n/B) I/Os
 - O(n²) time
 - O(n) space

- Computationals models
- Shortest path in implicit grid graphs
 - RAM algorithm
 - I/O algorithms
 - Cache-oblivious algorithm