Grammar Compression and Random Access

• Grammar Compression
• Random Access
Grammar Compression

• Statistical compression.
 • Huffman, arithmetic encoding, ...

• Dictionary compression.
 • Lempel-Ziv, ...

• Grammar compression.
 • Repair, sequitur, greedy, bisection, ...

• Kolmogorov complexity.
Grammar Compression

- **Grammar compression.** Encode string S as an grammar G that generates S.
- **Straight-line program.** Assume G is a straight-line program.
 - G is acyclic.
 - Each production in G is either $X_i \rightarrow X_jX_k$ or $X_i \rightarrow \tau$.
- **Encoding.** Re-pair, bisection, greedy, ...
- **Decoding.** Unfold productions top-down.

```
abcabcababacababc
```

```
X_{12} \rightarrow X_{11}X_9  
X_6 \rightarrow X_5X_5  
X_{11} \rightarrow X_6X_{10}  
X_5 \rightarrow X_4X_3  
X_{10} \rightarrow X_7X_8  
X_4 \rightarrow X_1X_2  
X_9 \rightarrow X_4X_5  
X_3 \rightarrow c  
X_8 \rightarrow X_1X_3  
X_2 \rightarrow b  
X_1 \rightarrow a
```
Grammar Compression

• **Re-pair compression** [Larsson and Moffat 2000].
 • Start with string S.
 • Replace a most frequent pair ab by new character X_i. Add production $X_i \rightarrow ab$.
 • Repeat until string is a single character.

```
X_9
X_8X_6        X_9 \rightarrow X_8X_6
X_3X_7X_6     X_8 \rightarrow X_3X_7
X_3X_4X_5X_6  X_7 \rightarrow X_4X_5
X_3X_4X_5X_1X_2  X_6 \rightarrow X_1X_2
X_3X_4acX_1X_2  X_5 \rightarrow ac
X_3X_1X_1acX_1X_2  X_4 \rightarrow X_1X_1
X_2X_2X_1X_1acX_1X_2  X_3 \rightarrow X_2X_2
X_1cX_1cX_1X_1acX_1X_1c  X_2 \rightarrow X_1c
abcabcababacababc  X_1 \rightarrow ab
```
Grammar Compression

- Grammar compression properties.
 - Many dictionary schemes can be viewed as grammar compressors.
 - Smallest grammar is NP-hard.
 - LZ77 is lower bound on the smallest grammar.
 - LZ77 can be converted to grammar with blowup by logarithmic factor.
 - Grammar very useful for compressed computation.
Random Access

- **Random Access Problem.** Represent grammar G of size n generating string S of length N to support
 - $\text{access}(i)$: return $S[i]$
Random Access

- **Applications.**
 - Most basic computational task on compressed data.
 - Component in most algorithms and data structures that work directly on compressed data (compressed computing).
 - Interesting selection of elegant and useful data structural techniques.
Random Access

• **Goal.** Random access with $O(n)$ space $O(\log N)$ query time.

• **Solution in 4 steps.**
 • **Top-down search.** Slow but only linear space.
 • **Heavy-path decompositions.** Almost fast but too much space.
 • **Heavy-path redundancy.** Almost fast with linear space.
 • **Interval-biased search.** Fast and linear space.
Solution 1: Top Down Search

- **Data structure.** Store size of string generated by each node.
- **Access**(x): Top-down search for x.
- **Time.** $O(h) = O(n)$
- **Space.** $O(n)$
Solution 2: Heavy Path Decomposition

- **Heavy-path decomposition.**
 - Start at root. Choose a child of maximum size repeatedly until we reach leaf.
 - Repeat for subtrees hanging off tree.
- **Lemma.** $O(\log N)$ heavy paths on any root-to-leaf path.
- **Proof:** Size decrease by at least half on each light edge.
Solution 2: Heavy Path Decomposition

- **Data structure.** For each heavy path store list of values + char at end of heavy path.
- **Access(x):** Predecessor search on each heavy-path on root-to-leaf path.
- **Time.** $O(\log \log N \log N)$
- **Space.** $O(n^2)$
Solution 3: Heavy-Path Redundancy

- **Idea.** Exploit overlaps in heavy-paths to get compact representation.
- **Heavy-path suffix forest.**
 - Tree of all suffixes of heavy-paths.
 - v is a parent of u iff u is heavy child of v.
 - Only n nodes.
Solution 3: Heavy-Path Redundancy

- Predecessor on heavy path.
 - Weighted ancestor problem on heavy path suffix forest.
 - Weigh each edge with size of off-path subtree.
 - Keep left and right edge weights separate.
 - Search for x to the left = closest ancestor of distance ≥ x.
 - Similar for search to the right.
Solution 3: Heavy-Path Redundancy

• **Lemma.** For a tree with n nodes and edge weights from universe $[0…N]$ we can solve the weighted ancestor problem in $O(n)$ space and $O(\log \log N)$ time.

• **Access(x):** Weighted ancestor query on each heavy-path on root-to-leaf path.

• **Time.** $O(\log \log N \log N)$

• **Space.** $O(n)$
Solution 4: Interval Biased Search

• **Lemma.** For a tree with n nodes and edge weights from universe $[0…N]$ we can solve the weighted ancestor problem in $O(n)$ space and $O(\log (N/S))$ time, where S is size of subtree hanging off path.

• **Access(x):** Weighted ancestor query on each heavy path on root to leaf path.

• **Time.** $\log (N/S_1) + \log (S_1/S_2) + \log (S_2/S_3) + \log (S_3/S_4) + ... + O(1)$

 $= \log N - \log S_1 + \log S_1 - \log S_2 + \log S_2 - \log S_3 + \log S_3 + ... + O(1)$

 $= O(\log N)$
Random Access

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top down search</td>
<td>$O(n)$</td>
<td>$O(h) = O(n)$</td>
</tr>
<tr>
<td>Heavy path decomposition</td>
<td>$O(n^2)$</td>
<td>$O(\log N \log \log N)$</td>
</tr>
<tr>
<td>Heavy path redundancy</td>
<td>$O(n)$</td>
<td>$O(\log N \log \log N)$</td>
</tr>
<tr>
<td>Interval biased search</td>
<td>$O(n)$</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>Lower bound</td>
<td>$n \log^{O(1)} N$</td>
<td>$\Omega(\log^{1-\epsilon} N)$</td>
</tr>
</tbody>
</table>
Grammar Compression and Random access

• Grammar Compression
• Random Access