Predecessor

• Predecessor Problem
• van Emde Boas
• Tries
Predecessor

- Predecessor Problem
- van Emde Boas
- Tries
Predecessors

- **Predecessor problem.** Maintain a set $S \subseteq U = \{0, \ldots, u-1\}$ supporting
 - `predecessor(x)`: return the largest element in S that is $\leq x$.
 - `successor(x)`: return the smallest element in S that is $\geq x$.
 - `insert(x)`: set $S = S \cup \{x\}$
 - `delete(x)`: set $S = S - \{x\}$
Predecessors

• **Applications.**
 • Simplest version of *nearest neighbor problem*.
 • Several applications in other algorithms and data structures.
 • Central problem for internet routing.
Predecessors

• **Routing IP-Packets**

 • Where should we forward the packet to?

 • To address matching the *longest prefix* of 192.110.144.123.

 • Equivalent to predecessor problem.

 • Best practical solutions based on advanced predecessor data structures [Degermark, Brodnik, Carlsson, Pink 1997]
Predecessors

• Which solutions do we know?
Predecessor

- Predecessor Problem
- van Emde Boas
- Tries
van Emde Boas

- **Goal.** Static predecessor with $O(\log \log u)$ query time.
- **Solution in 5 steps.**
 - **Bitvector.** Very slow
 - **Two-level bitvector.** Slow.
 -
 - **van Emde Boas [Boas 1975].** Fast.
Solution 1: Bitvector

- Data structure. Bitvector.
- Predecessor(x): Walk left.
- Time. $O(u)$
Solution 2: Two-Level Bitvector

- **Data structure.** Top bitvector + $u^{1/2}$ bottom bitvectors.
- **Predecessor(x):** Walk left in bottom + walk left in top + walk left bottom.
 - To find indices in top and bottom write $x = \text{hi}(x) \cdot 2^{1/2 \cdot \log u} + \text{lo}(x) = \text{hi}(x) \cdot u^{1/2} + \text{lo}(x)$
 - Index in top is $\text{hi}(x)$ and index in bottom is $\text{lo}(x)$.
- **Time.** $O(u^{1/2} + u^{1/2} + u^{1/2}) = O(u^{1/2})$
Solution 3: Two-Level Bitvector with less Walking

- **Data structure.** Solution 2 with min and max for each bottom structure.
- **Predecessor(x):**
 - If hi(x) in top and lo(x) ≥ min in bottom[lo(x)] walk left in bottom.
 - if hi(x) in top and lo(x) < min or hi(x) not in top walk left in top. Return max at first non-empty position in top.
- We either walk in bottom or top.
- **Time.** O(u^{1/2})
- **Observation.**
 - Query is walking left in one vector of size u^{1/2} + O(1) extra work.
 - Why not walk using a predecessor data structure?
Solution 4: Two-Level Bitvector within Top and Bottom

- **Data structure.** Apply solution 3 to top and bottom structures of solution 3.
- Walking left in vector of size $u^{1/2}$ now takes $O((u^{1/2})^{1/2}) = O(u^{1/4})$ time.
- Each level adds $O(1)$ extra work.
- **Time.** $O(u^{1/4})$
- Why not do this recursively?
Solution 5: van Emde Boas

• **Data structure.** Apply recursively until size of vectors is constant.
• **Time.** $T(u) = T(u^{1/2}) + O(1) = O(\log \log u)$
• **Space.** $O(u)$
van Emde Boas

• **Theorem.** We can solve the static predecessor problem in
 • $O(u)$ space.
 • $O(\log \log u)$ time.
• Combined with perfect hashing we can reduce space to $O(n)$ [Mehlhorn and Näher 1990].
• Easy to add insert and delete.
Predecessor

- Predecessor Problem
- van Emde Boas
- Tries
Tries

- **Goal.** Static predecessor with $O(n)$ space and $O(\log \log u)$ query time.
- Equivalent to van Emde Boas but different perspective. Simpler?
- **Solution in 3 steps.**
 - **Trie.** Slow and too much space.
 - **X-fast trie.** Fast but too much space.
 - **Y-fast trie.** Fast and little space.
Tries

- **Trie.** Tree T of prefixes of binary representation of keys in S.
 - Depth of T is $\log u$
 - Number of nodes in T is $O(n \log u)$.
Data structure.
- T as binary tree with min and max for each node + keys ordered in a linked list.

Predecessor(x):
- Top-down traversal to find the longest common prefix of x with T.
- x branches of T to right \Rightarrow Predecessor(x) is max of sibling branch.
- x branches of T to left \Rightarrow Successor(x) is min of sibling branch. Use linked list to get predecessor(x).

Time. $O(\log u)$
Space. $O(n \log u)$
Solution 2: X-Fast Trie

- **Data structure.**
 - For each level store a dictionary of prefixes of keys + solution 1.
 - **Example.** $d_1 = \{0,1\}$, $d_2 = \{00, 10, 11\}$, $d_3 = \{000, 001, 100, 101, 111\}$, $d_4 = S$
- **Space.** $O(n \log u)$

$S = \{0, 2, 8, 11, 14\} = \{0000_2, 0010_2, 1000_2, 1011_2, 1110_2\}$
Solution 2: X-Fast Trie

• **Predecessor(x):** Binary search over levels to find longest matching prefix with x.

• **Example.** Predecessor(9 = 1001_2):
 - 10_2 in d_2 exists ⇒ continue in bottom 1/2 of tree.
 - 100_2 in d_3 exists ⇒ continue in bottom 1/4 of tree.
 - 1001_2 in d_4 does not exist ⇒ 100_2 is longest prefix.

• **Time.** O(log log u)
Solution 2: X-Fast Trie

- Theorem. We can solve the static predecessor problem in
 - \(O(\log \log u) \) time
 - \(O(n \log u) \) space.
- How do we get linear space?

S = \{0, 2, 8, 11, 14\} = \{0000_2, 0010_2, 1000_2, 1011_2, 1110_2\}
Solution 3: Y-Fast Trie

- **Bucketing.**
 - Partition S into $O(n / \log u)$ groups of $\log u$ consecutive keys.
 - Compute $S' = \text{set of split keys between groups. } |S'| = O(n/\log u)$
- **Data structure.** x-fast trie over S' + balanced binary search trees for each group.
- **Space.**
 - x-fast trie: $O(|S'| \log u) = O(n/ \log u \cdot \log u) = O(n)$.
 - Balanced binary search trees: $O(n)$.
 - $\implies O(n)$ in total.
Solution 3: Y-Fast Trie

- **Predecessor(x):**
 - Compute $s = \text{predecessor}(x)$ in x-fast trie.
 - Compute predecessor(x) in BBST to the left or right of s.

- **Time.**
 - x-fast trie: $O(\log \log u)$
 - balanced binary search tree: $O(\log (\text{group size})) = O(\log \log u)$.
 - $\Rightarrow O(\log \log u)$ in total.
Solution 3: Y-Fast Trie

\[S = \{0, 2, 8, 11, 14\} = \{0000_2, 0010_2, 1000_2, 1011_2, 1110_2\} \]

- **Theorem.** We can solve the static predecessor problem in
 - O(log log u) time
 - O(n) space.
Y-Fast Tries

• **Theorem.** We can solve the static predecessor problem in
 • $O(n)$ space.
 • $O(\log \log u)$ time.

• **Theorem.** We can solve the dynamic predecessor problem in
 • $O(n)$ space
 • $O(\log \log u)$ expected time for predecessor and updates.

 From dynamic hashing
Predecessor

- Predecessor Problem
- van Emde Boas
- Tries