
Weekplan: Nearest Common Ancestors and Range Minimum
Queries

Inge Li Gørtz

References and Reading

[1] The LCA problem revisited, M. A. Bender, M. Farach-Colton, Latin American Symposium 2000.

[2] Scribe notes from MIT

[3] Fast Algorithms for Finding Nearest Common Ancestors, D. Harel and R. E. Tarjan, SIAM J. Comput., 13(2),
338–355.

We recommend reading [1] and [2] in detail before the lecture. [3] provides background on NCA.

Exercises

1 Reduction from RMQ to RMQ In the lecture we saw how to reduce RMQ to LCA via a Cartesian tree and
from LCA to RMQ.

1.1 Build the Cartesian tree T for the array A= [3, 5,1,3, 8,6, 9,2, 42,4, 7,12].

1.2 Reduce LCA on T to RMQ. That is, construct the array for the RMQ instance.

1.3 Prove that the reduction from LCA to RMQ is correct (in general—not just on the instance from the previous
exercise).

2 Cartesian Trees Give an efficient algorithm for constructing the Cartesian tree of an array with n elements.

3 Range X Queries We saw how to support range minimum queries on an array A of n elements in linear space
and constant time. Try to support the following similar queries on A:

• Range Maximum Queries

• Range Sum Queries

• Range Median Queries

Let S be a set and c be a constant, and consider a function f : S→ [nc]. Formulate a general and sufficient condition
for supporting range f queries in linear space and constant time. Such a query takes indicies 1 ≤ i ≤ j ≤ n and
returns f ({A[i], A[i + 1], ..., A[j]}).

4 Longest Common Prefixes Let S be a set of strings and n=
∑

x∈S |x | be their total length. Give an O(n)-space
data structure that supports the following query in constant time:

• LCP(i, j): Return the length of the longest common prefix of the two strings x i , x j ∈ S.

E.g., if x i = algorithms and x j = alcohol then LCP(i, j) = |al|= 2.

1

5 Size of blocks In the RMQ data structure we divided the array into blocks of length 1
2 log n. What happens

if we instead use a block size of

• log n

• 3
4 log n

6 Distance Queries in Trees Let T be a unrooted tree in which each edge has an integer weight. The distance
between two nodes u and v is the sum of edge weights on the path between u and v. Give a linear-space data
structure for T that can report the distance between any pair of nodes in constant time.

7 Level ancestor In the level ancestor problem we want to support the following query in a tree T :

• LA(x , k): Return the kth ancestor of x in T .

7.1 Give an O(n2) space and O(1) time solution to the level ancestor problem.

7.2 Use jump pointers to give a O(n log n) space and O(log n) time solution to the level ancestor problem.

7.3 Use a ladder decomposition to give a O(n) space and O(log n) time solution to level ancestor.

7.4 Combine jump pointers and the ladder decomposition to give a O(n log n) space and O(1) time solution to
the level ancestor problem.

8 Minimum Path Queries in Trees Let T be a unrooted tree in which each edge has an integer weight. Give a
time and space efficient data structure for T that can report the minimum weight edge between any pair of nodes.

2

