Approximation Algorithms

• NP-hard problems: choose 2 of
 • optimal
 • polynomial time
 • all instances

• Approximation algorithms. Trade-off between time and quality.

• Let $A(I)$ denote the value returned by algorithm A on instance I. Algorithm A is an α-approximation algorithm if for any instance I of the optimization problem:
 • A runs in polynomial time
 • A returns a valid solution
 • $A(I) \leq \alpha \cdot \text{OPT}$, where $\alpha \geq 1$, for minimization problems
 • $A(I) \geq \alpha \cdot \text{OPT}$, where $\alpha \leq 1$, for maximization problems

Scheduling jobs on a single machine

• n jobs
• Each job j has: processing time p_j, release date r_j, due date d_j.
• Once a job has begun processing it must be completed.
• Schedule starts at time 0.
• Lateness of job j completed at time C_j: $L_j = C_j - d_j$.
• Goal. Schedule all jobs so as to minimize the maximum lateness:
 \[\text{minimize } L_{\text{max}} = \max_{i=1...n} L_i \]
Scheduling jobs on a single machine

- \(n \) jobs
- Each job \(j \) has: processing time \(p_j \), release date \(r_j \), due date \(d_j \).
- Once a job has begun processing it must be completed.
- Schedule starts at time 0.
- Lateness of job \(j \) completed at time \(C_j \): \(L_j = C_j - d_j \).
- Goal. Schedule all jobs so as to minimize the maximum lateness:
 \[
 \text{minimize } L_{\text{max}} = \max_{i=1...n} L_i
 \]

NP-hard even to decide if all jobs can be completed by their due date.

- **Problem**: Assume optimal value is 0 then
 - \(\alpha \)-approximation algorithm must find a solution of value at most \(\alpha \cdot 0 = 0 \)
 - no such algorithm exists unless \(P=NP \).
- **Solution**: Assume all due dates are negative (optimal value always positive).

Earliest Due Date Rule

- Earliest due date rule (EDD). When machine idle: start processing an available job with earliest due date.

Earliest Due Date Rule

- **Earliest due date rule (EDD)**. When machine idle: start processing an available job with earliest due date.
Lower bound

- Let S be a subset of jobs
 - $r(S) = \min_{j \in S} r_j$
 - $p(S) = \sum_{j \in S} p_j$
 - $d(S) = \max_{j \in S} d_j$
 - L^* optimal value

- **Claim.** For any subset S of jobs: $L^* \geq r(S) + p(S) - d(S)$.
- **Proof.**
 - Look at optimal schedule restricted to S.
 - No job can be processed before $r(S)$.
 - Needed processing time $p(S)$.
 - Latest job i to be processed cannot complete earlier than $r(S) + p(S)$.
 - $d_i \leq d(S)$ => lateness of i at least $r(S) + p(S) - d(S)$.
 - $L^* \geq L_i$

EDD: Approximation factor

- j: job with maximum lateness ($L_{max} = L_j = C_j - d_j$).
- t: earliest time before C_j that machine idle (not idle in $[t,C_j]$).
- S: jobs processed in $[t,C_j]$.
- We have:
 - $r(S) = t$ and $p(S) = C_j - t$.
 - $C_i = p(S) + t = p(S) + r(S)$.
- Use Claim:
 - $L^* \geq r(S) + p(S) - d(S) \geq r(S) + p(S) = C_j$.
 - $L^* \geq r_j + p_j - d_j \geq - d_j$.
 - $L_{max} = C_j - d_j \leq 2L^*$.

Scheduling on identical parallel machines

- n jobs to be scheduled on m identical machines.
- Each job has a processing time p.
- Once a job has begun processing it must be completed.
- Schedule starts at time 0.
- Completion time of job $j = C_j$.
- Goal. Schedule all jobs so as to minimize the maximum completion time (makespan):
 $$\text{minimize } C_{max} = \max_{j=1,...,n} C_j$$

Local search

- Start with any schedule
- Consider job that finishes last:
 - If reassigning it to another machine can make it complete earlier, reassign it to the one that makes it finish earliest.
- Repeat until last finishing job cannot be transferred.
- The local search algorithm above is a 2-approximation algorithm:
 - polynomial time
 - valid solution ✓
 - factor 2
Each job must be processed: $C^* \geq \max_{i=1...n} p_i$.

There is a machine that is assigned at least average load: $C^* \geq \sum_{i=1...n} p_i/m$.

All other machines busy until start time s of job i. ($s = C_i - p_i$)

Partition schedule into before and after s.

After $s \leq C^*$.

Before:

- All machines busy \Rightarrow total amount of work $= m \cdot s$.
- $m \cdot s \leq \sum_{i=1...n} p_i \Rightarrow s \leq \sum_{i=1...n} p_i/m \leq C^*$.

Length of schedule $\leq 2C^*$.

Running time

- Polynomial time. Does it terminate?
- Minimum completion time of machines C_{\min} never decreases.
- Remains same \Rightarrow number of machines with minimum completion time decreases.
- No job transferred more than once:
 - Proof by contradiction. Assume job transferred twice.

Length of schedule $\leq 2C^*$.

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

• LPT is a 4/3-approximation algorithm:
 - polynomial time ✓
 - valid solution ✓
 - factor 4/3
• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
• Assume $p_1 \geq \ldots \geq p_n$.
• Assume wlog that smallest job finishes last.
• If $p_n \leq C^*/3$ then $C_{\max} \leq 4/3 C^*$.
• If $p_n > C^*/3$ then each machine can process at most 2 jobs.
• Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.

The k-center problem

• Input. An integer k and a complete, undirected graph $G=(V,E)$, with distance $d(i,j)$ between each pair of vertices $i,j \in V$.
• d is a metric:
 • $d(i,i) = 0$
 • $d(i,j) = d(j,i)$
 • $d(i,j) \leq d(i,l) + d(l,j)$
• Goal. Choose a set $S \subseteq V$, $|S| = k$, of k centers so as to minimize the maximum distance of a vertex to its closest center.

$$S = \arg\min_{|S| = k} \max_{i \in V} d(i,S)$$

• Covering radius. Maximum distance of a vertex to its closest center.

k-center: Greedy algorithm

• Greedy algorithm.
 • Pick arbitrary $i \in V$.
 • Set $S = \{i\}$
 • while $|S| < k$ do
 • Find vertex j farthest away from any cluster center in S
 • Add j to S

• Greedy is a 2-approximation algorithm:
 • polynomial time ✓
 • valid solution ✓
 • factor 2
k-center: analysis

- \(r^* \) optimal radius.
- Show all vertices within distance \(2r^* \) from a center.
- Consider optimal clusters. 2 cases.
 - Algorithm picked one center in each optimal cluster
 - distance from any vertex to its closest center \(\leq 2r^* \) (triangle inequality)
 - Some optimal cluster does not have a center.
 - Some cluster have more than one center.
 - distance between these two centers \(\leq 2r^* \).
 - when second center in same cluster picked it was the vertex farthest away from any center.
 - distance from any vertex to its closest center at most \(2r^* \).

k-center: Inapproximability

- There is no \(\alpha \)-approximation algorithm for the k-center problem for \(\alpha < 2 \) unless P=NP.
- **Proof.** Reduction from dominating set.
 - Dominating set: Given \(G=(V,E) \) and \(k \). Is there a (dominating) set \(S \subseteq V \) of size \(k \), such that each vertex is either in \(S \) or adjacent to a vertex in \(S \).
 - Given instance of the dominating set problem construct instance of k-center problem:
 - Complete graph \(G' \) on \(V \).
 - All edges from \(E \) has weight 1, all new edges have weight 2.
 - Radius in k-center instance 1 or 2.
 - \(G \) has an dominating set of size \(k \) \(\iff \) opt solution to the k-center problem has radius 1.
 - Use \(\alpha \)-approximation algorithm \(A \):
 - \(\text{opt} = 1 \) \(\implies \) \(A \) returns solution with radius at most \(\alpha < 2 \)
 - \(\text{opt} = 2 \) \(\implies \) \(A \) returns solution with radius 2.
 - Can use \(A \) to distinguish between the 2 cases.