=
—
e

i

Advanced Topics In

Software Engineering (02265)
— The project(s) —

Ekkart Kindler

DTU Informatics
Department of Informatics and Mathematical Modeling

- ee:
ojects S
For more details on pro courses!

hittp: -[[WwWW2.CO ompute. dtu.dk

.

‘ DTU Informatics

M

Projects

= Part of this course is a project (ca. 2 ECTS points)

= The evaluation of this course Is based on the
result of this project

= The project is done in groups of 2-4 students
= There are different projects you can chose from

(and you can suggest own ones, which need to get special approval, though)

= The different projects must use some of the
concepts and technologies presented in this course

= The following presentation, gives an overview of the

Projects (much more details will follow in the project and tutorial slots
over the next weeks).

Advanced Topics in Software Engineering (02265): Projects overview 2

Overview of proposals

‘ DTU Informatics
Department of Informa

M

1. An editor for a network of hierarchical module definitions

Context: Often, software models are defined in a hierarchical way,
defining modules with some ports, which can be used to define modules.

Task: A graphical editor for views navigating in such a hierarchy (and to
interactively "inline” the substructure of modules in order to see the
overall structure of the system (to the depth the user wants to).

Mechanisms for definining such modules individually (simple — not
necessarily grahical).

Scope: Focus on technology study for such an editor (= Oticon masters
project could follow).

Advanced Topics in Software Engineering (02265): Projects overview 3

‘ DTU Informatics

Overview of proposals

M

2. A component model for defining formal models
Context: Formal models (here Petri nets) can be used for formally

verifying that a system fulfills some requirements. Modelling a large
system as a Petri net is tedious. One solution for this problem is to
define typical components of some application domain as a Petri net,
and then to build the system in this domain by combining these
components.

Task: Implement a tool for define some basic Petri net components and
an editor for combining these components. From the definition of these
components, and model that connects such components, the tool should
automatically generate the Petri net of the then do some simple form of
analyis or verification of the system (overall Petri net).

Scope: Tool can reuse the ePNK for defining components; focus on
editor for combining the defined components, and for generating the
overall Petri net and do some simple analysis.

Advanced Topics in Software Engineering (02265): Projects overview 4

‘ DTU Informatics 7

Overview of proposals

M

3. A GUI modelling language for ECNO Applications

Context: The Event Coordination Notation (ECNO) is a notation for
modelling a system including the structure as well as the behaviour of
the system. From such ECNO models, the software can be generated
fully automatically. The automatically generated GUI is not very nice and
very flexible.

Task: Desing a language to define the GUI for an ECNO application,
and a GUI engine that implements the GUI as defined (interprted or
generated). The language must as a minimum support the features of an
existing example (Workers example from ECNO report), which was
manually implemented.

Scope: The workers example must be completely covered; and flexible
enough for modelling GUIs for other applications. GUI implementation
does not need to look fancy (proof of concept) is enough.

Advanced Topics in Software Engineering (02265): Projects overview 5

‘ DTU Informatics

Overview of proposals

M

4. Flexible data collection with smart phones

Context: Scientific projects in many areas need to collect personal data
for their empirical studies (health, wellbeing, dietary needs), which they
would collect via apps for smartphones. Implementing such apps over
and over again is a waste of time (in particular, when support of different
platforms is needed).

Task: Design simple language for defining surveys in a general and
flexible way. Then, an app should be implemented, which equipped with
such a definition of a survey conducts the survey. The definition of the
survey should allow defining the questions asked and the type of the
data to be entered; it should be possible that the questions asked
depend on the answer to earlier questions. Also it should be possible to
define the frequency of how often certain parts of the survey

Scope: No web backend for now; data stored locally. Focus is clear
design of such a language and a proof of concept implementation
(supporting all language features); Android only.

Advanced Topics in Software Engineering (02265): Projects overview 6

ics and Mathematical Modelling

Overview of proposals |5 e,

=
—
=

M

n order to understand the presentation of these

projects, this presentation gives an overview of these
projects (more details to follow over the next weeks)

= ePNK

= ECNO

Advanced Topics in Software Engineering (02265): Projects overview

Meta-levels (reminder)

Department of Informatics and Mathematical Modelling

‘ DTU Informatics

=
—
=

:Class

PetriNet
t
Object
I]
_24 sour
Node |2 Arc
<<
9 1 targ
Transition Place |‘ Token
:Petrinet
ce target
—| :Transition {0 = :Arc r§ :Place
/ \target sourcl \
— :Arc :Arc
\/ source targe&
arget Soukge .
:Token — .Place [& :Arc :Transition

Advanced Topics in Software Engineering (02265): Projects overview

L 2
=
>
|
ClassDiagram
*
| _J start
Class > Association
} end
| I e |
Association
& 2 :Class
Association
LI

DTU Informatics DTU
e P N K Department of Informatics and Mathematical Modelling “"‘II
Ekkart Kindler >

e

File Edit Diagram Mavigate Search Project Run Window Help

13- B0 EHEG S G- 5 |8 v |
. — Eg:hi - D% - D:a_a - . E hd 100%: W
] Package Expl I3 & Hier archey =8 D% MinDistance . prml i3] Page: The page 2 =8
=] |§| - . Palette [>
=i JRE System Library [Javase-1.6] h&a-
e g)
B8k Plug-in Dependencies AGENT init root () Place
[sre 1y 1,00 sortsymbaols N
[icons ! AGEMT; [Transition
% ME.TA-INF . root nodes sorts A Arc
o bulld_-propertIE_s R(Y MESSAGE = (AGEMTHMAT), ' Page
plugin. properties DISTAMCE = (AGEMTH*MATY; =
plugin. sl M(x,1) o (¥ RefPlace
W) . opsymbols
1= org.pnml.tools,epnk. gmf.inkegration 1) Update 1t Rt MS{AGENT), [RefTransitian
=-1=F org.prml.tools,epnk. prml-examples-d MESSAGE DISTAMCE M AGEMT, MAT -3 M3(MESSAGE); = Label
D% hlpng-technical-example. prml - e
m e messages -
D% MinDistance. prml distances DID(S) — &l AGENT — R(); = Link Label
D% MS-Bool-Int-technical-sxample.pr MOGn+L e 17 () ’ 5 Page Label
D% M3-Boal-Int-technical-sxample.sa =
< 2 N 1)
. X,
B2 o utine 52 ‘|_E|‘:'EI 1" (x,m) *
o= Cutine E |5 AGENT vars
17 % AGENT,
n: MAT,
m: MAT;
inner nogs
init inner
eclaration |2 Progress @Error Log %F‘Iug-ins = Properties 272 =9| E|:{=:9 ¥ =08

Walue 2
asr HL Annotation 17 {x,n)
EE1(n)
w

Advanced Topics in Software Engineering (02265): Projects overview 9

Type Definition: PT-Net |

DTU Informatics

Department of Informatics and Mathematical Modelling

=
—
=

M

Annotation

/\

‘ initialMarking

Place PTMarking

L 2

inscription oo
Arc & PTInscription
text textr
NonNegativelnteger Positivelnteger

Advanced Topics in Software Engineering (02265): Projects overview

10

Type Definition: HLPNG (outiine)

Department of Informatics and Mathematical Modelling

‘ DTU Informatics

Ekkart Kindler

=
—
=

M

{redefines label}
Page H

HLPNG)
. text
Annotation 0.1| XML::PCDATA
type
{redefines label} Type ‘0 structure Type
0..1
Place 0.1
hlinitialMarking
{redefines lat;eli HLMarking }‘ structgre1 Term /‘.\'
N A S pa
condition B GY\\“d es
. defines label S
Transition }0 iredefines aoei Condition \0 structure Term 80 (‘,\as
i 0.1 ca: UQ\S\ -
‘\S“
(CO/
hlinscription
defines label
Arc }‘ {redefines aoei HLAnnotation L structure Term
- 0..1
declaration
. {redefines label} * .
PCtI'lNet : Declaration ‘ structure Slgnature
declaration =* 0..1

Advanced Topics in Software Engineering (OZZGS):EP{rngEES" '9>v>erview

11

Extended Petri nets

& Plug-in Development - dk.imm.seZ2. pertinets.examples.codegenerator/petrinetsfinteractionfinit. petrinets_diagram - Eclipse SDK

S =4 =

DTU Informatics

Department of Informatics and Mathematical Modelling

Ekkart Kindler

L= Palette

= [:‘cji dk.imm.se2, pertinets. examples. code

o LNt pnd;
Seq pnz)
EE dk.imm.sez. pertinets, codege:

EB dk.imm. se2. pertinets, exampl
E-H7 dk.imm,se2.pertinets, excampl

ol

t1

tarmiaatad e}

t2

nZ

[} Init.java 107

DE. Seq.java 107

EE, Simple.java 50

[} simpletithCode. java 107
EE, Unbounded. java 20

init

init ..
pnl = new Init();
pnl.start(});

EE dk.imm.sez. pertinets. exampl
B IRE System Library [JavasE-1.6] P t3
=5 petrinets 50
== inkeraction 107
&} init.petrinets 107
D% init.pekrinets_diagram 10
[#) EE, seq.petrinets 107
& D'ﬁ seq. petrj

pn2 = new Seq();
pn2.start();

_code. petrlnets

I
& simple_y W|th code. oy
smnle ﬁe& ﬁvﬁ

=_diagram

bounded petring
E g] unb p@@ rar
WY\ Cutline = do E-

init pl

I:'Xwennets iagram &3

firish

System.out.printin{"do"}; stop();

@Error Log ;_-:.Tasks [z_\Prohlems ¥~ Rechtschreibung |'§|_J History: @ Progress | 1 P

| 0 items selected

<terminated> TestEngine [Java Application] C:i\ProgrammelJavaijrel 6.0_07binljavaw. exe (01 |

tarminatad s}
t4

B pS

p3 [Transition
() Place
.. v Token
“= Import
firish & Attribute
stop
pt

Petri nets: Execution Environment

Eile Edit Diagram Mavigate Search Project Petrinets Run Field Assist Window Help

] [wif - 0-G,- Lﬁﬂ-ﬁ*@ - I A R R SR G i @ [%5 Debug >
= B [— '&}3.' o2 « ;?3- = - ::.:.v |-3:=PIug-inDeveI...

[£ pac $ Flug |-—[>‘_'| Proj &3 = O || ®% simple.petrinets_dia Eﬁ Compare (Simple. java [J] simple java 5% simple_with_code.pet B iniit petrinets_diagr 52 [3] Init.java ! =g

Advanced Topics in Software Engineering (02265): Projects ove

di.imm.se2 pertinets.examples.generated.Init: 1
Stop init 11 t3 t2 14 finish
di.imm.se2 pertinets.examples.generated.Init: 2
Stop init 11 t3 t2 14 finish
di.imm.se pertinets.examples.generated.Seq: 3
Stop do finish
NALSAL 12

‘ DTU Informatics

Overview of proposals

M

2. A component model for defining formal models
Context: Formal models (here Petri nets) can be used for formally

verifying that a system fulfills some requirements. Modelling a large
system as a Petri net is tedious. One solution for this problem is to
define typical components of some application domain as a Petri net,
and then to build the system in this domain by combining these
components.

Task: Implement a tool for define some basic Petri net components and
an editor for combining these components. From the definition of these
components, and model that connects such components, the tool should
automatically generate the Petri net of the then do some simple form of
analyis or verification of the system (overall Petri net).

Scope: Tool can reuse the ePNK for defining components; focus on
editor for combining the defined components, and for generating the
overall Petri net and do some simple analysis.

Advanced Topics in Software Engineering (02265): Projects overview 13

DTU Informatics

I\/I Odel b u i It fro m CO m po n entS ‘ Department of Informatics and Mathematical Modelling

=
—
=

M

§

-l

Component Tools: Integrating Petri Nets with other Formal Methods

\ 4
1
d
A

14

" " DTU Informatics
T h e P etrl n et b e h I n d Department of Informatics and Mathematical Modelling

Ekkart Kindler

)
—
e

M

Component Tools: Integrating Petri Nets with other Formal Methods

15

Component definitions |

e

DTU Informatics

Department of Informatics and Mathematical Modelling

Ekkart Kindler

=
—
=

M

Component Tools: Integrating Petri Nets with other Formal Methods

n.track

16

Department of Informatics and Mathematical Modelling
Ekkart Kindler

Component definitions

‘ DTU Informatics

=
—
e

i

()®_[] n.track
-0

]
<<
]

Yy s

Component Tools: Integrating Petri Nets with other Formal Methods

n2.track

17

DTU Informatics
Department of Informatics and Mathematical Modelling

=
—
=

M

™

§

&

Component Tools: Integrating Petri Nets with other Formal Methods

18

E C N O ‘ DTU Informatics ‘ 7 ‘

M

Event Coordination NOtation:

= Modelling the local behaviour of system components
(objects)

= Describe how this local behaviour Is coordinated
with each other - interactions

= On top of OO models or OO implementations

Advanced Topics in Software Engineering (02265): Projects overview 19

Example: Class diagram

0,.*
cdar

H car

= name : EString

D“*
passenger

DTU Informatics

Department of Informatics and Mathematical Modelling
Ekkart Kindler

=
—
=

M

D L
worker

*

H worker

needed

= name : EString

D“*
Jjob

§,

H Job

= name : EString

@ createlobs(EString) : Job

Advanced Topics in Software Engineering (02265): Projects overview

20

Example: Initial Config

Department of Informatics and Mathematical Modelling

‘ DTU Informatics

=
—
=

M

vw:.Car bmw:Car
ali:\Worker bert:\Worker cleo:Worker dan:Worker

d:Job
ab:JM

abcd:Job

acd:Job

Advanced Topics in Software Engineering (02265): Projects overview

21

Example: Coordination

(2 arriv

[depart

|

|

<
|

= Car

ATV E

arrive- =411

L

passenger

)
—
e

depart

/depar't— »ALL
arrive-&ﬂ%

car R‘“"-
1 depart- >0OMNE

DTU Informatics
‘ Department of Informatics and Mathematical Modelling -
Ekkart Kindler >
[dolob | [cancellob |
Jobt Job l J
workers: Worker *
newlMame: EString
= Worker « | Jab
assigned
cancellob
dolob ~dolob->0ONE
rrive dolob->ALL T {olob |
epart needed
22

Advanced Topics in Software Engineering (02265): Projects overview

. = DTU Informatics
E e m e ntS L IVe ‘ yC e Department of Informatics and Mathematical Modelling
|

Ekkart Kindler

home

d = depart(]; t2 tl a = arrive():

wark

Car

home

d = depart();

t2

wark

t3

1

tl

Worker

Advanced Topics in Software Engineering (02265): Projects overview

=
—
=

M

import dik.dtu.imm.se.ecno.examples.workers. Worker;

created

c =cancellobl);

e

cancelled

j = doJobiself{).,none.none);

0

done

jnewNamelength{) = 5

a = arrive();

j = doJob{none,self(),none);

for (Object o self().createlobsj.newMName))
engine.addElerment{o);

System.out.print™Warkers: ");

for (Worker worker: joworkers) {
Systerm.out.print" " + worker.getMame());

}
Systern.out.println();

Job

23

|| ECNO: GUI

- VW _ali_bert : Car [1]

arrive

depart

BMW _cleo_dan : Car [4]

arrive depart
~ ali : Worker [2]
arrive depart

bert : Worker [3]

arrive

depart

cleo : Worker [5]

arrive

depart

dan : Worker [§]

arrive

depart

(ali, bert) : Job [7]

cancelJob

(ali, cleo, dan) : Job [8]

cancelJob

{dan) : Job [9]

cancelJob

(ali, bert, cleo, dan) : Job [10]

cancelJob

DTU Informatics

=
—
e

Department of Informatics and Mathematical Modelling ""‘II
Ekkart Kindler >
| |
|£:| Workers Example: Worklist = - B |3
~Open other worklist panel
Hew worklist panel
~ Select a worker
ali |«
- Select a work item
Some name (ali, bert) (ali, bert) - DoJob
arrive depart
| <) Workers Example: Worklist =B)
- Open other worklist panel
Hew worklist panel
- Select a worker
bert |«
- Select a work item
Some name {ali, bert) (ali, bert)
) - \JP 10
arrive de \d a‘.\\ med\
oJv a

[Engineering (02265): Projects overview

ECNO related project | B e e

M

3. A GUI modelling language for ECNO Applications

Context: The Event Coordination Notation (ECNO) is a notation for
modelling a system including the structure as well as the behaviour of
the system. From such ECNO models, the software can be generated
fully automatically. The automatically generated GUI is not very nice and
very flexible.

Task: Desing a language to define the GUI for an ECNO application,
and a GUI engine that implements the GUI as defined (interprted or
generated). The language must as a minimum support the features of an
existing example (Workers example from ECNO report), which was
manually implemented.

Scope: The workers example must be completely covered; and flexible
enough for modelling GUIs for other applications. GUI implementation
does not need to look fancy (proof of concept) is enough.

Advanced Topics in Software Engineering (02265): Projects overview 25

M

Overview of proposals

‘ DTU Informatics
Department of Informa

1. An editor for a network of hierarchical module definitions

Context: Often, software models are defined in a hierarchical way,
defining modules with some ports, which can be used to define modules.

Task: A graphical editor for views navigating in such a hierarchy (and to
interactively "inline” the substructure of modules in order to see the
overall structure of the system (to the depth the user wants to).

Mechanisms for definining such modules individually (simple — not
necessarily grahical).

Scope: Focus on technology study for such an editor (= Oticon masters
project could follow).

Advanced Topics in Software Engineering (02265): Projects overview 26

Modul Definition: xdm |

Advanced Topics in Software Engineering (02265): Projects overview

DTU Informatics

ment of Informatics and Mathematical)

v1 v2 v3
‘xdm'’
structural
P P
! v1 ! ! v2 !
xdm 1 xdm 3
min (H avg H max [— const
P P P P P P
max const
xdm 3
product
P
v v ¢ y v
X || thro
min avg product const

ugh

27

=
=

M

Modul Definition: xdm

v1 v2 v3
‘xdm’
structural
P P
A J \ 4
v1 v2
‘xdm 1’
functional
F xdm 3
min (H avg H max [— const
P P P P P P
max const
xdm 3
product
P
Yy Vv ¢ Y v
min av roduct const [thro
g p ugh

Yanartme
‘ vepartme

DTU Informatics

nt of Informatics and Mathematical Modelling

=
—]
=

M

7ooming !
('\meract'\ve\y

nto definitions

by user)

Advanced Topics in Software Engineering (02265): Projects overview

28

Modul Definition: xdm

v1 v2 v3
‘xdm’
structural
P P
A J Y
v1 v2
‘xdm 1’ ‘xdm 3’
functional functional
min (H avg H max [— const
P P P P P P
max const
‘xdm 2’
functional
product
P
) S | # Y Y
— thro
min [avg product const ugh

DTU Informatics

=
—
=

Department of Informatics and Mathematical Modelling | e
—
Zooming into deﬂn\‘uo)ns
' r
('\nteract\ve\y by us€
29

Advanced Topics in Software Engineering (02265): Projects overview

‘ DTU Informatics

Overview of proposals

M

4. Flexible data collection with smart phones

Context: Scientific projects in many areas need to collect personal data
for their empirical studies (health, wellbeing, dietary needs), which they
would collect via apps for smartphones. Implementing such apps over
and over again is a waste of time (in particular, when support of different
platforms is needed).

Task: Design simple language for defining surveys in a general and
flexible way. Then, an app should be implemented, which equipped with
such a definition of a survey conducts the survey. The definition of the
survey should allow defining the questions asked and the type of the
data to be entered; it should be possible that the questions asked
depend on the answer to earlier questions. Also it should be possible to
define the frequency of how often certain parts of the survey

Scope: No web backend for now; data stored locally. Focus is clear
design of such a language and a proof of concept implementation
(supporting all language features); Android only.

Advanced Topics in Software Engineering (02265): Projects overview 30

=
—]
=

Rough schedule for projects: ‘ DEAHTHER O TdrTaRs i MAhEITates] Mot

M

Week 7 (Feb. 11): Forming of groups
(via Campus Net)

Week 8 (Feb. 18): Every group decides on their
project

(via Campus Net)

Week 9 (Feb. 25): Every group writes 1-2 pages
of a project description
(via Campus Net)

Advanced Topics in Software Engineering (02265): Projects overview 31

Rough schedule for projects: Lol U —

=
—]
=

M

Week 11 (March 11).: Every group submits a project
definition (ca. 5 pages)

(via Campus Net)

]

Week 19 (May 6): Every group presents their project
(Maybe we need some additional slot for that)

Week 23, June 2 (last day of examination period):
Submission (via Campus Net) of project result:
Code/Pluglns and example; documentation of the

design, implementation, and the use of the
product/example (report)

Advanced Topics in Software Engineering (02265): Projects overview

32

