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Projects

= Part of this course is a project (ca. 2 ECTS points)

= The evaluation of this course Is based on the
result of this project

= The project is done in groups of 2-4 students
= There are different projects you can chose from

(and you can suggest own ones, which need to get special approval, though)

= The different projects must use some of the
concepts and technologies presented in this course

= The following presentation, gives an overview of the

Projects (much more details will follow in the project and tutorial slots
over the next weeks).
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1. An editor for a network of hierarchical module definitions

Context: Often, software models are defined in a hierarchical way,
defining modules with some ports, which can be used to define modules.

Task: A graphical editor for views navigating in such a hierarchy (and to
interactively "inline” the substructure of modules in order to see the
overall structure of the system (to the depth the user wants to).

Mechanisms for definining such modules individually (simple — not
necessarily grahical).

Scope: Focus on technology study for such an editor (= Oticon masters
project could follow).
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2. A component model for defining formal models
Context: Formal models (here Petri nets) can be used for formally

verifying that a system fulfills some requirements. Modelling a large
system as a Petri net is tedious. One solution for this problem is to
define typical components of some application domain as a Petri net,
and then to build the system in this domain by combining these
components.

Task: Implement a tool for define some basic Petri net components and
an editor for combining these components. From the definition of these
components, and model that connects such components, the tool should
automatically generate the Petri net of the then do some simple form of
analyis or verification of the system (overall Petri net).

Scope: Tool can reuse the ePNK for defining components; focus on
editor for combining the defined components, and for generating the
overall Petri net and do some simple analysis.
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3. A GUI modelling language for ECNO Applications

Context: The Event Coordination Notation (ECNO) is a notation for
modelling a system including the structure as well as the behaviour of
the system. From such ECNO models, the software can be generated
fully automatically. The automatically generated GUI is not very nice and
very flexible.

Task: Desing a language to define the GUI for an ECNO application,
and a GUI engine that implements the GUI as defined (interprted or
generated). The language must as a minimum support the features of an
existing example (Workers example from ECNO report), which was
manually implemented.

Scope: The workers example must be completely covered; and flexible
enough for modelling GUIs for other applications. GUI implementation
does not need to look fancy (proof of concept) is enough.
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4. Flexible data collection with smart phones

Context: Scientific projects in many areas need to collect personal data
for their empirical studies (health, wellbeing, dietary needs), which they
would collect via apps for smartphones. Implementing such apps over
and over again is a waste of time (in particular, when support of different
platforms is needed).

Task: Design simple language for defining surveys in a general and
flexible way. Then, an app should be implemented, which equipped with
such a definition of a survey conducts the survey. The definition of the
survey should allow defining the questions asked and the type of the
data to be entered; it should be possible that the questions asked
depend on the answer to earlier questions. Also it should be possible to
define the frequency of how often certain parts of the survey

Scope: No web backend for now; data stored locally. Focus is clear
design of such a language and a proof of concept implementation
(supporting all language features); Android only.
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n order to understand the presentation of these

projects, this presentation gives an overview of these
projects (more details to follow over the next weeks)

= ePNK

= ECNO
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2. A component model for defining formal models
Context: Formal models (here Petri nets) can be used for formally

verifying that a system fulfills some requirements. Modelling a large
system as a Petri net is tedious. One solution for this problem is to
define typical components of some application domain as a Petri net,
and then to build the system in this domain by combining these
components.

Task: Implement a tool for define some basic Petri net components and
an editor for combining these components. From the definition of these
components, and model that connects such components, the tool should
automatically generate the Petri net of the then do some simple form of
analyis or verification of the system (overall Petri net).

Scope: Tool can reuse the ePNK for defining components; focus on
editor for combining the defined components, and for generating the
overall Petri net and do some simple analysis.
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Event Coordination NOtation:

= Modelling the local behaviour of system components
(objects)

= Describe how this local behaviour Is coordinated
with each other - interactions

= On top of OO models or OO implementations
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Example: Class diagram
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= name : EString

@ createlobs(EString) : Job
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vw:.Car bmw:Car
ali:\Worker bert:\Worker cleo:Worker dan:Worker

d:Job
ab:JM

abcd:Job

acd:Job
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Car

home

d = depart();
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import dik.dtu.imm.se.ecno.examples.workers. Worker;

created

c =cancellobl);

e

cancelled

j = doJobiself{).,none.none);

0

done

jnewNamelength{) = 5

a = arrive();

j = doJob{none,self(),none);

for (Object o self().createlobsj.newMName))
engine.addElerment{o);

System.out.print™Warkers: ");

for (Worker worker: joworkers) {
Systerm.out.print" " + worker.getMame());

}
Systern.out.println();

Job
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|| ECNO: GUI
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3. A GUI modelling language for ECNO Applications

Context: The Event Coordination Notation (ECNO) is a notation for
modelling a system including the structure as well as the behaviour of
the system. From such ECNO models, the software can be generated
fully automatically. The automatically generated GUI is not very nice and
very flexible.

Task: Desing a language to define the GUI for an ECNO application,
and a GUI engine that implements the GUI as defined (interprted or
generated). The language must as a minimum support the features of an
existing example (Workers example from ECNO report), which was
manually implemented.

Scope: The workers example must be completely covered; and flexible
enough for modelling GUIs for other applications. GUI implementation
does not need to look fancy (proof of concept) is enough.
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1. An editor for a network of hierarchical module definitions

Context: Often, software models are defined in a hierarchical way,
defining modules with some ports, which can be used to define modules.

Task: A graphical editor for views navigating in such a hierarchy (and to
interactively "inline” the substructure of modules in order to see the
overall structure of the system (to the depth the user wants to).

Mechanisms for definining such modules individually (simple — not
necessarily grahical).

Scope: Focus on technology study for such an editor (= Oticon masters
project could follow).
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4. Flexible data collection with smart phones

Context: Scientific projects in many areas need to collect personal data
for their empirical studies (health, wellbeing, dietary needs), which they
would collect via apps for smartphones. Implementing such apps over
and over again is a waste of time (in particular, when support of different
platforms is needed).

Task: Design simple language for defining surveys in a general and
flexible way. Then, an app should be implemented, which equipped with
such a definition of a survey conducts the survey. The definition of the
survey should allow defining the questions asked and the type of the
data to be entered; it should be possible that the questions asked
depend on the answer to earlier questions. Also it should be possible to
define the frequency of how often certain parts of the survey

Scope: No web backend for now; data stored locally. Focus is clear
design of such a language and a proof of concept implementation
(supporting all language features); Android only.
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Week 7 (Feb. 11): Forming of groups
(via Campus Net)

Week 8 (Feb. 18): Every group decides on their
project

(via Campus Net)

Week 9 (Feb. 25): Every group writes 1-2 pages
of a project description
(via Campus Net)
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Week 11 (March 11).: Every group submits a project
definition (ca. 5 pages)

(via Campus Net)

]

Week 19 (May 6): Every group presents their project
(Maybe we need some additional slot for that)

Week 23, June 2 (last day of examination period):
Submission (via Campus Net) of project result:
Code/Pluglns and example; documentation of the

design, implementation, and the use of the
product/example (report)
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