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Benefits of Modelling ey |77
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= Better Understanding

= Mapping of instances to XML syntax (XMI)

= Automatic Code Generation

= API for creating, deleting and modifying model
= Methods for loading and saving models (in XMl)

= Standard mechanisms for keeping track of changes
(observers)

= Editors and GUIs — i
How about ‘real
hehaviour?
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5. The Event Coordination Notation

M

‘ DTU Compute

Motivation

= Given some object oriented software with (or without)
explicit domain model

= Model behaviour on top of it — and make these models
executable

= Model behaviour on a high level of abstraction
(domain level)

- Integrate behaviour models with structural models

- Integrate different structural models (even from different
technologies and without underlying models)
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« We call o) . Events (event type®)
elements nov" Coordination references.
a
o event type * qUam‘ﬂCat‘on
_ annotation .
Coin ®Y| return_: ALL \' GUI annotation
_ pass: 1
|nsertGU1 ‘* SlOt Coffee: 1
patss . >{ insert reset: ALL izietl' ALL Brewer
return_ |insert: 1 return_ | 2ass: 1 Control — > coffee cup_in: 1
1 pass 7 coffee "|tea <— Output **
Safe < reset t reset - -
paSS: 1 ea I CUp_In CUp_In GUI
pass cance
Panel "' " | pass 4 Nt
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- insert(Coin coin, Slot slot) coffee()
ion ) S
. Event (type) dedarat pass(Coin coin, Slot slot) tea()
eters return(Slot slot) cancel()
= Param reset_()
cup_in()
Coin Y| return_: ALL cup_out()
_ pass: 1
|nsertGU1 ‘* SlOt Coffee: 1
pass . *> Insert reset: ALL i;tl: ALL Brewer
return_ |insert: 1 return_ | Pass:1 Control > coffee cup_in: 1
pass  |* " |tea <— Output *"!
1 coffee reset .
Safe [« reset tea : cup _in
pass: 1 cup_in P_1N e
pass — . cancel Cup_out
Panel .| pass 4
coffee., |coffee: 1 reset
tea: 1 Coffee
tea w cancel: ALL
cancele
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Interaction = +
local behavior

k coordina

return: ALL
return (&
. Slot

:Coin Si7 S :Coffee
t return Jj | :Control | > reset
return B ' _\ :
return: ALL reset (- N Coffee :Output
. Safe ¢ N— _reset Jj o .
reset
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E\,em binding J

C= EﬂfEE[];

r = reset(); ready brewing

cup = cup_in();
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impaort di.dtu.imm.se.ecno.engine. ExecutionEngine;

Attribute dec\arat'\on
Ehere constants)

final ExecutionEngine engine = ExecutionEngine.getinstance():

self.getSlot().remove(i.slot); U\C’uoﬂ J

i = insert(self, none): engine. removeElement (self);

p = pass(self, none);

inserted

r = return_({none); self.getSlot (). add(r.slot);
engine.addElement(self);
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Local behaviour: Control
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pass
p = pass{nnne.ngnE]; C = EﬂffEE{]:

coffee
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p= pass{nung,nﬂnE]; t = tea();

¢ = cancel(); r = reset();
: reset

cancel
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Local behaviour: Slot
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self.getCoin( !}.E'.I'EE{ )< 2

i = insert(none, self);

p = pass{none, self);~

res = reset();
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self.getCoinl ).remove(p.coin);
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Interaction =
local behavior
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return: ALL
return (&
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5.2 ECNO: Basic Concepts

= ElementTypes (Classes)

= EventTypes with
= parameters

= Global Behaviour: Coordination annotations for references

= Event type
= Quantification (1 or ALL)

= Local behaviour: ECNO nets
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insert(Coin coin, Slot slot)

coffee: 1

tea: 1

Brewer

Control

eset: AL,
7

coffee
tea
cancel
pass
reset

coffee tea
reset
cup_in

= Event binding (with parameter assignment)

= Condition
= Action
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self, gettoﬁwf}.sﬁzer} < 2

i = insert{none, self);

""" self.getCoin(). add(i.coin);
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ECNO: Basic Concepts

n 1S
= ElementTypes (Classes) parameter pass\io\sgs'\ca\
= EventTypes with different [fo7 gt'\ons‘.

= parameters methOd e

= Global Behaviour: Coordinatio
= Event type

= Quantification (1 or ALL)

= Local behaviour: Or something else
= Event binding (with parameter assignment)

= Condition
e e way
o ECNO nets are but oaav‘our-
of modelling |ocal be
ATSE (02265), L11: ECNO & Outlook
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5.3 Extensions

ECNO with its basic concepts has some limitations,
which makes modelling things in an adequate way a
bit painful.

= Right now, for one event type we need to consider
all coordination annotations for that event type
starting from the element.

Sometimes, we just want to follow either one or
another or a subset together.
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ECNO with its basic concepts has some limitations,

which makes modelling things in an adequate way a
bit painful.

= Sometimes, we want to extend event types later

L
[4 coffee |
e

ATSE (02265), L11: ECNO & Outlook 22



"Nicer Vendingmachine”

DTU Compute
Department of Applied Mathematics and Computer Science

=
—
e

>
o
Ekkart Kindler >
|
p = pass(none,none); d = drink();
[¢ insert | [ pass | [4 return i
coin: Caoin cain: Cain slot: Slot :
Llut: Slot J slot: Slot M
< reset
<+ Coin 4 Slot - c = cancel(); r = reset(};
return_- =ALL ;
D cuin.. ///_D |
4 Control
|:| pass-=0ME slot
Nt'>ONE |:| |:| \'\ 1 reset-=4LL
k reset- =41 —
slot pass->ONE i:l brewer |4 Brewer % Output
. |:| |:| cup_in-=>CMNE
pass-=0
drink->0OMNE D
4 Safe 4 Panel
|:| drink- > 0OME brewer
] safe ol |:| “ cup_in < cup_::uuﬂ
contro |
cancel-=ALL
- 4 CoffeeBrewer < TeaBrewer
< coffee [ tea

S .

r = reset(); ready
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Event Inheritance
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Question: Would we like to have multiple inheritance

on event types?

Problems:

= We could never be sure
that two event types that
were meant to be different
are different!

= \We would not know which
event type an instance of
subtype would represent!
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Event Inheritance
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Question: Would we like to have multiple inheritance
on event types? usion! Without @

id co
Ay compeling argument L
do not introduce multipie
Problems: ‘nheritance ON
_ coffee -{} tea
= We could never be sure ]
that two event types that
were meant to be different & really

are different!

= \We would not know which
event type an instance of
subtype would represent!

ATSE (02265), L11: ECNO & Outlook 25



Behaviour inheritance

Jepartment of Applied Mathematics and Co

‘ DTU Compute

M

-]
=
—
=

¢ i
r = reset(); ready
brewing
< Caoin ALl 4 Slot -
return_- =
D o //_D 4 Control cup = cup_in();
slot
Nt'>ONE (][] \\\ ] reset->4LL /
reset-=ALL brewer - .
slat *E‘EWE' < Output
cup_in-=0ME
drink->0MNE |:| |:| - |:|
+ Safe b Panel k> ONE brewer
S e
cancel-=ALL
t. n - < CoffeeBrewer 4 TeaBrewes \ \
o)

/Clearer separaf\ - Fome]  [Em) Coffee brewer ?rt\hye
of automaton © | / needs 10 m(.)(.je #
gen eral brewer ¢ = coffee(); coffee speC\f\C stu
pehaviour and (cast drink to

. s-
coffee specific coffee)! 4,
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Behaviour inheritance
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= Every level in the element type hierarchy of an
element can have a behaviour. These behaviours
will be synchronized, and jointly executed.

= Only if the behaviour on all levels can participate
(has a choice) for an event, the element can
participate in this event.
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How can we model that
behaviour in ECNO nets?

@/QD\ ©

N
o

remove k _/
Transition t enabled: fire Transition t:
for ALL incoming Arcs a: for ALL incoming Arcs a:
for ONE source Place p of Arc a: for ONE source Place p of Arc a:
find a token find a token and remove it

for ALL outgoing arcs a:
for ONE target Place p of Arc a:
add a new Token
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Petri net: Class Diagram
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ECNO Semantics of PN |
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f = firel); r = removel); a = add();

a = add():
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SOurce
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tokens

Femove H——_

remowe-=0MNE

4 Token

------ self.setOwner(null);
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r = removel):™

import dk.dtuimm.se.ecno.example petrinets.PetrinetsFactony;

final PetrinetsFactory factory = PetrinetsFactory, eINSTAMCE;

----- self.getTokens().add{factory.createToken());
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Traggtion: 1 Transition: 1 Transition: 1 Transition: 1 Transition: 1

% fire fire fire fire

Transition: 2 Trajggtion: 2 Transition: 2 Transition: 2 Transition: 2
fire % fire fire fire

Transition: 3 Transition: 3 Traggtion: 3 Transition: 3 Transition: 3
fire fire % fire fire

Transition: 4 Transition: 4 Transition: 4 Tra'iun::l Transition: 4
fire fire fire fire fire

t4
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ECNO: Student projects |57
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= ACID: Run ECNO on top of a data base (hibernate
for persisting the current state)

= PDE support:

= Debugging ECNO models
visualize enabled and not-enabled interactions
formulate conditions / create break points

= Better integration with Java

= DSL for GUI of ECNO application:
(cf. project 3 - larger project (e.f WFMS))

ATSE (02265), L11: ECNO & Outlook
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ECNO: Student projects |57
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= Theory:
= formalisation of ECNO semantics and verification

= formalisation of ECNO semantics in ECNO itself
(which concepts are needed for that)

= Methodology:
= Larger examples
= Best practices: make good use of the features
= ECNO for which kinds of systems

ATSE (02265), L11: ECNO & Outlook
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Overview i =
= Modelling

= OCL

= Automata Works nicely for structure;

= Petri nets but not so nicely for

= BPM (concepts only) behaviour yet!

= Meta-modelling (MOF)

= self-referential
= self-describing (M3)

= Transformation & synchronisation of models
= M2T (JET, Codegeneration)
= M2M (TGG & QVT)

= DSLs (Domain Specific Languages)

ATSE (02265), L11: ECNO & Outlook
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The Meta Object Facility (MOF) | e
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M3 MOF notation
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T = conforms to/ is instance of
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Meta-levels
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Meta modelling

‘ DTU Compute

M

= understanding and clarifying concepts and
making them explicy (independently of concrete syntax)

= puilding tools that support Model-based Software
Engmeermg (MBSE) fOn the model as well as on
\Lthe meta modelling level!
= bootstrapping: developing tools in their own
technology (ultimate litmus test)
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Model-driven Architecture (MDA)
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Use models on different levels of detail and granularity
for modelling software and generating software out of
them

= CIM: Computation Independent Model what
(conceptual)

= PIM: Platform Independet Model
(technical but not platform specific)

= PSM:Platform Specific Model how
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SEZ2: Specifying Software

‘ DTU Compute

=
—]
=

M

G{em'\ﬂder

= Project Definition

= Requirements Specification
= rough
= detailed

= Systems specification

= Complete Models

= Implementation, Documentation
Handbook
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SEZ2: Specifying Software

‘ DTU Compute

G{em'\ﬂder

= Project Definition

= Requirements Specification
= rough
= detailed

= Systems specification

= Complete Models

= Implementation, Documentation
Handbook

\4

g% detailed
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Model-driven Architecture (MDA)
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= CIM: Computation Independent Model

(conceptual) what
= PIM: Platform Independet Model
(technical but not platform specific)
. \ 4
= PSM: Platform Specific M g, only the oW

Strictly Spea
first one is M
often use the t

DA (that's why |
Two approaches: erm MBSE)
= Transformation CIM - PIM - PSM - Code

= |ncremental CIM + PIM + PSM - Code
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"Domain model” vs. "Software model”

= A "software model”, in a sense, models the "how” of
the software

= A "domain model” models the "what”
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