=
—
e

i

Advanced Topics In
Software Engineering (02265)

Ekkart Kindler

DTU Compute
Department of Applied Mathematics and Computer Science

DTU Compute DTU
Department of Applied Mathematics and Computer Science >
Ekkart Kindler >

VII. Modelling Behaviour (cntd.)

ATSE (02265), L11: ECNO & Outlook

=
—_
=

V' = DTU Compute
. Department of Applied Mathematics and Computer Science
ISION (reminder from LO1)

Ekkart Kindler

M

¥
OSjeot

— ’ &—-
- - | - i r q - __ sl
S Moodle [[m B -
: ; L S— 4~‘4 A | |
P(ace ﬁ
—Z

Exploit conceptual artefacts
(and generate software

U‘rom them). D

L

ATSE (02265), L11: ECNO & Outlook 3

Today (reminder from LO1)

‘ DTU Compute

=
—
=

M

PetriNet
?
Transition]
meta model Oject
Place ? |
_4 sourd
Node 2 Arc
Arc g 1 targ
Token Transition Place |‘— Token
/ :Petrinet
generate an
ed Itor urc target
| :Transition {0 :Arc g} :Place
/ \target sourcA
— :Arc Arc
W source l targ ¥/
:Token — :Place {a L :Arc Sou‘s :Transition

concrete syntax abstract syntax

ATSE (02265), L11: ECNO & Outlook

Benefits of Modelling ey |77

=
=

M

= Better Understanding

= Mapping of instances to XML syntax (XMI)

= Automatic Code Generation

= API for creating, deleting and modifying model
= Methods for loading and saving models (in XMl)

= Standard mechanisms for keeping track of changes
(observers)

= Editors and GUIs — i
How about ‘real
hehaviour?

” funct'\ona\'\ty /

\

_J

ATSE (02265), L11: ECNO & Outlook

5

5. The Event Coordination Notation

M

‘ DTU Compute

Motivation

= Given some object oriented software with (or without)
explicit domain model

= Model behaviour on top of it — and make these models
executable

= Model behaviour on a high level of abstraction
(domain level)

- Integrate behaviour models with structural models

- Integrate different structural models (even from different
technologies and without underlying models)

ATSE (02265), L11: ECNO & Outlook 6

5.1 Example

Vending machin

Coin

N

v *

Slot

Safe

N

DTU Compute
epartment ot

Panel

Control

]
—
e

M

Brewer

ATSE (02265), L11: ECNO & Outlook

\ 4

N

Coffee

Output

Tea

Instance: object diagram

:Coin

:Coin

:Coin

v

: Safe

\ 4

N

DTU Compute
Jepartment of Appliec M

=
—
=

ATSE (02265), L11: ECNO & Outloo

: Slot
:Coffee
< :Control >
\ :Qutput
:Coffee
:Panel R
- > :Tea
al
Object diagram 8 IS5
_
8

=
—
=

. . . DTU Com
COO rd I natl O n D I ag ram ‘ Depar [(\)"‘F:U'((e(Applied Mathematics and Computer Science z
o Ekkart Kindler \ >
ecls .
« We call o) . Events (event type®)
elements nov" Coordination references.
a
o event type * qUam‘ﬂCat‘on
_ annotation .
Coin ®Y| return_: ALL \' GUI annotation
_ pass: 1
|nsertGU1 ‘* SlOt Coffee: 1
patss . >{ insert reset: ALL izietl' ALL Brewer
return_ |insert: 1 return_ | 2ass: 1 Control — > coffee cup_in: 1
1 pass 7 coffee "|tea <— Output **
Safe < reset t reset - -
paSS: 1 ea I CUp_In CUp_In GUI
pass cance
Panel "' " | pass 4 Nt
coffee., |coffee: 1 reset
tea o tciiclel ALL Coffee Tea
cancela '
ATSE (02265), L11: ECNO & Outlook 9

=
—
=

. DTU Compute
o + Eve nt deCIaratlon i')o{mm‘aﬁ.m(t(l”f=.(:v|’>‘tt‘fi Mathematics and Computer Science -—
Ekkart Kindler >
- insert(Coin coin, Slot slot) coffee()
ion) S
. Event (type) dedarat pass(Coin coin, Slot slot) tea()
eters return(Slot slot) cancel()
= Param reset_()
cup_in()
Coin Y| return_: ALL cup_out()
_ pass: 1
|nsertGU1 ‘* SlOt Coffee: 1
pass . *> Insert reset: ALL i;tl: ALL Brewer
return_ |insert: 1 return_ | Pass:1 Control > coffee cup_in: 1
pass |* " |tea <— Output *"!
1 coffee reset .
Safe [« reset tea : cup _in
pass: 1 cup_in P_1N e
pass — . cancel Cup_out
Panel .| pass 4
coffee., |coffee: 1 reset
tea: 1 Coffee
tea w cancel: ALL
cancele

ATSE (02265), L11: ECNO & Outlook

Interactions

DTU Compute
Jepartment ot App

=
=

M

:Output

A/

Coin
_ ”| :Slot
Coin S .Coffee
: | -Caontrol >
|l |
L pass S < {]
<afe pass PasS JIl [:Coffee
| Safe _‘—'\ | < =
pass coffee: 1 LCOﬁee]
‘Panel | coffee l
<< >D\ “———t :Tea
coffee coffee: 1 coffee: 1

ATSE (02265), L11: ECNO & Outlook

11

=
—
=

. DTU C
I nte raCtI O nS Depar [(\)‘1“'[[:1‘1:(3(Applied Mathematics and Computer Science z
Ekkart Kindler >
\nteract\on =
local behav
coordi
Coin
_ ”| :Slot
Coin S .Coffee
r — Y = J ,'Cnntml‘ >
" pass H© ' A '—1 T \ :Output
\)| pass Outpu
cafe | Pass] :Coffee
- Dale |° |
- —
pass coffee: 1 COﬁee] I
L) :Panel | coffee |
= E— ' ~ > :Tea
coffee || coffee: 1 I \]
ATSE (02265), L11: ECNO & Outlook 12

=
=

DTU Compute

An Oth er I nte raCti O n Department of Applied Mathematics and Computer Science

Ekkart Kindler

M

Interaction = +
local behavior

k coordina

return: ALL
return (&
. Slot

:Coin Si7 S :Coffee
t return Jj | :Control | > reset
return B ' _\ :
return: ALL reset (- N Coffee :Output
. Safe ¢ N— _reset Jj o .
reset
Panel | || cancel || S Ten | /
o S > Tea
cancel: ALL
cancel reset

ATSE (02265), L11: ECNO & Outlook

Department of Applied Mathematics and Computer Science
Ekkart Kindler

Local behaviour: Coffee |57

=
—
e

i

E\,em binding J

C= EﬂfEE[];

r = reset(); ready brewing

cup = cup_in();

ATSE (02265), L11: ECNO & Outlook

14

=
—
=

Ekkart Kindler

- . - DTU Compute
I O Ca e aVI O u r ‘ O I n Department of Applied Mathematics and Computer Science
|

W i

impaort di.dtu.imm.se.ecno.engine. ExecutionEngine;

Attribute dec\arat'\on
Ehere constants)

final ExecutionEngine engine = ExecutionEngine.getinstance():

self.getSlot().remove(i.slot); U\C’uoﬂ J

i = insert(self, none): engine. removeElement (self);

p = pass(self, none);

inserted

r = return_({none); self.getSlot (). add(r.slot);
engine.addElement(self);

ATSE (02265), L11: ECNO & Outlook 15

Department of Applied Mathematics and Computer Science
Ekkart Kindler

Local behaviour: Control

‘ DTU Compute

)
—
e

M

pass
p = pass{nnne.ngnE]; C = EﬂffEE{]:

coffee

il

p= pass{nung,nﬂnE]; t = tea();

¢ = cancel(); r = reset();
: reset

cancel

3

ATSE (02265), L11: ECNO & Outloo

16

Local behaviour: Slot

‘ DTU Compute

Ekkart Kindler

Department of Applied Mathematics and Computer Science

)
—
e

M

self.getCoin(!}.E'.I'EE{)< 2

i = insert(none, self);

p = pass{none, self);~

res = reset();

ATSE (02265), L11: ECNO & Outlook

self.getCoin(). add(i.coin);

self.getCoinl).remove(p.coin);

self.getCaoinl).clear();

)

return

reset

—

17

L
I nte raCtI O n S Department of Applied Mathematics and Computer Science

Ekkart Kindler

‘ DTU Compute ‘ DTU
N(

S

Interaction =
local behavior

k Coord'\na

return: ALL
return (&
. Slot

:Coin S S

return

Mretam e e} Control =——>
return 7 N \ :Output
return: ALL | reset t ‘Coffee
: Safe € — LSS M ¢
reset
:Panel —— || cancel || "T—/
LA | . ea
N— b -ea |

C
cancel: ALL
cancel reset

ATSE (02265), L11: ECNO & Outlook 18

5.2 ECNO: Basic Concepts

= ElementTypes (Classes)

= EventTypes with
= parameters

= Global Behaviour: Coordination annotations for references

= Event type
= Quantification (1 or ALL)

= Local behaviour: ECNO nets

‘ DTU Compute

w—
—
| e

M

insert(Coin coin, Slot slot)

coffee: 1

tea: 1

Brewer

Control

eset: AL,
7

coffee
tea
cancel
pass
reset

coffee tea
reset
cup_in

= Event binding (with parameter assignment)

= Condition
= Action

ATSE (02265), L11: ECNO & Outlook

self, gettoﬁwf}.sﬁzer} < 2

i = insert{none, self);

""" self.getCoin(). add(i.coin);

19

ECNO: Basic Concepts

n 1S
= ElementTypes (Classes) parameter pass\io\sgs'\ca\
= EventTypes with different [fo7 gt'\ons‘.

= parameters methOd e

= Global Behaviour: Coordinatio
= Event type

= Quantification (1 or ALL)

= Local behaviour: Or something else
= Event binding (with parameter assignment)

= Condition
e e way
o ECNO nets are but oaav‘our-
of modelling |ocal be
ATSE (02265), L11: ECNO & Outlook

20

‘ DTU Compute

M

5.3 Extensions

ECNO with its basic concepts has some limitations,
which makes modelling things in an adequate way a
bit painful.

= Right now, for one event type we need to consider
all coordination annotations for that event type
starting from the element.

Sometimes, we just want to follow either one or
another or a subset together.

ATSE (02265), L11: ECNO & Outlook 21

=
—]
=

Limitations (cntd.) ot

M

ECNO with its basic concepts has some limitations,

which makes modelling things in an adequate way a
bit painful.

= Sometimes, we want to extend event types later

L
[4 coffee |
e

ATSE (02265), L11: ECNO & Outlook 22

"Nicer Vendingmachine”

DTU Compute
Department of Applied Mathematics and Computer Science

=
—
e

>
o
Ekkart Kindler >
|
p = pass(none,none); d = drink();
[¢ insert | [pass | [4 return i
coin: Caoin cain: Cain slot: Slot :
Llut: Slot J slot: Slot M
< reset
<+ Coin 4 Slot - c = cancel(); r = reset(};
return_- =ALL ;
D cuin.. ///_D |
4 Control
|:| pass-=0ME slot
Nt'>ONE |:| |:| \'\ 1 reset-=4LL
k reset- =41 —
slot pass->ONE i:l brewer |4 Brewer % Output
. |:| |:| cup_in-=>CMNE
pass-=0
drink->0OMNE D
4 Safe 4 Panel
|:| drink- > 0OME brewer
] safe ol |:| “ cup_in < cup_::uuﬂ
contro |
cancel-=ALL
- 4 CoffeeBrewer < TeaBrewer
< coffee [tea

S .

r = reset(); ready

ATSE (02265), L11: ECNO & Outlook

(e

/

¢ = coffee();

brewing

cup = cup_in();

23

Event Inheritance

‘ DTU Compute

=
=
=

M

Question: Would we like to have multiple inheritance

on event types?

Problems:

= We could never be sure
that two event types that
were meant to be different
are different!

= \We would not know which
event type an instance of
subtype would represent!

ATSE (02265), L11: ECNO & Outlook

_

< really

=
—]
=

Event Inheritance

‘ DTU Compute

M

Question: Would we like to have multiple inheritance
on event types? usion! Without @

id co
Ay compeling argument L
do not introduce multipie
Problems: ‘nheritance ON
_ coffee -{} tea
= We could never be sure]
that two event types that
were meant to be different & really

are different!

= \We would not know which
event type an instance of
subtype would represent!

ATSE (02265), L11: ECNO & Outlook 25

Behaviour inheritance

Jepartment of Applied Mathematics and Co

‘ DTU Compute

M

-]
=
—
=

¢ i
r = reset(); ready
brewing
< Caoin ALl 4 Slot -
return_- =
D o //_D 4 Control cup = cup_in();
slot
Nt'>ONE (][] \\\] reset->4LL /
reset-=ALL brewer - .
slat *E‘EWE' < Output
cup_in-=0ME
drink->0MNE |:| |:| - |:|
+ Safe b Panel k> ONE brewer
S e
cancel-=ALL
t. n - < CoffeeBrewer 4 TeaBrewes \ \
o)

/Clearer separaf\ - Fome] [Em) Coffee brewer ?rt\hye
of automaton © | / needs 10 m(.)(.je #
gen eral brewer ¢ = coffee(); coffee speC\f\C stu
pehaviour and (cast drink to

. s-
coffee specific coffee)! 4,
ATSE (02265), L11: ECNO & Outlook 26

Behaviour inheritance

‘ DTU Compute

M

= Every level in the element type hierarchy of an
element can have a behaviour. These behaviours
will be synchronized, and jointly executed.

= Only if the behaviour on all levels can participate
(has a choice) for an event, the element can
participate in this event.

ATSE (02265), L11: ECNO & Outlook 27

)
—
e

DTU Compute

5 . 4 An Oth er exam p I e : Petrl n etS ‘ Department of Applied Mathematics and Computer Science

Ekkart Kindler

M

~

How can we model that
behaviour in ECNO nets?

@/QD\ ©

N
o

remove k _/
Transition t enabled: fire Transition t:
for ALL incoming Arcs a: for ALL incoming Arcs a:
for ONE source Place p of Arc a: for ONE source Place p of Arc a:
find a token find a token and remove it

for ALL outgoing arcs a:
for ONE target Place p of Arc a:
add a new Token

ATSE (02265), L11: ECNO & Outlook 28

Petri net: Class Diagram

DTU Compute

Department of Applied Mathematics and Computer Science
Ekkart Kindler

H petrinet
—_— -
0.* . 0.*
nodes inurce m?t“ arcs
H Node = | H Arc

= name : EString

target In
e

H Transition

H place

owner

0.1
0.*

tokens
H Token

ATSE (02265), L11: ECNO & Outlook

29

=
=

i

ECNO Semantics of PN |

)

4 Transition

DTU Compute

bee) peee]

[—Jemove- =ALL

in

r

Femove

[add | [remove |
T [Arc 1 T4 Place
out target
hdd H———dd->ALL hdd H——" _qd->0NE bdd |

—\rerruzru'e-}DNE

f = firel); r = removel); a = add();

a = add():

r = remove():

SOurce

1

Department of Applied Mathematics
Ekkart Kindler

=
—
=

and Computer Science

M

L

tokens

Femove H——_

remowe-=0MNE

4 Token

------ self.setOwner(null);

ATSE (02265), L11: ECNO & Outlook

r = removel):™

import dk.dtuimm.se.ecno.example petrinets.PetrinetsFactony;

final PetrinetsFactory factory = PetrinetsFactory, eINSTAMCE;

----- self.getTokens().add{factory.createToken());

30

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
=

M

Traggtion: 1 Transition: 1 Transition: 1 Transition: 1 Transition: 1

% fire fire fire fire

Transition: 2 Trajggtion: 2 Transition: 2 Transition: 2 Transition: 2
fire % fire fire fire

Transition: 3 Transition: 3 Traggtion: 3 Transition: 3 Transition: 3
fire fire % fire fire

Transition: 4 Transition: 4 Transition: 4 Tra'iun::l Transition: 4
fire fire fire fire fire

t4

ATSE (02265), L11: ECNO & Outlook

t2

rWith the ECNO

concepts as
presented up to
now, t1 would

QV hy?

never be enabled!

~

_/

31

ECNO: Student projects |57

M

= ACID: Run ECNO on top of a data base (hibernate
for persisting the current state)

= PDE support:

= Debugging ECNO models
visualize enabled and not-enabled interactions
formulate conditions / create break points

= Better integration with Java

= DSL for GUI of ECNO application:
(cf. project 3 - larger project (e.f WFMS))

ATSE (02265), L11: ECNO & Outlook

32

ECNO: Student projects |57

=
=
=

M

= Theory:
= formalisation of ECNO semantics and verification

= formalisation of ECNO semantics in ECNO itself
(which concepts are needed for that)

= Methodology:
= Larger examples
= Best practices: make good use of the features
= ECNO for which kinds of systems

ATSE (02265), L11: ECNO & Outlook

33

DTU Compute DTU
Department of Applied Mathematics and Computer Science >
Ekkart Kindler >

VIIl. Summary and Outlook

ATSE (02265), L11: ECNO & Outlook

34

=
—
=

Overview i =
= Modelling

= OCL

= Automata Works nicely for structure;

= Petri nets but not so nicely for

= BPM (concepts only) behaviour yet!

= Meta-modelling (MOF)

= self-referential
= self-describing (M3)

= Transformation & synchronisation of models
= M2T (JET, Codegeneration)
= M2M (TGG & QVT)

= DSLs (Domain Specific Languages)

ATSE (02265), L11: ECNO & Outlook

35

The Meta Object Facility (MOF) | e

]
—
e

M

M3 MOF notation
/ A t\
M2 Any modelling notation
A
|
M1 Model
A
|
MO User data
_ J

T = conforms to/ is instance of

ATSE (02265), L11: ECNO & Outlook

Meta-levels

:Token

PetriNet

‘ DTU Compute

ATSE (02265), L11: ECNO & Outlook

_2} sour
Node |2 Arc
<<
9 1 targ
Transition Place |‘ Token
:Petrinet
urce target
—| :Transition {0 :Arc § :Place
/ \target sourcl \
— :Arc :Arc
\/ source targe&
_jarget sougge "
— .Place [& :Arc :Transition

=
—
=

:Class

L 2
o
>
|
ClassDiagram
*
| _J start
Class > Association
} end
| I e |
Association
& 2 :Class
Association
L I B

Meta modelling

‘ DTU Compute

M

= understanding and clarifying concepts and
making them explicy (independently of concrete syntax)

= puilding tools that support Model-based Software
Engmeermg (MBSE) fOn the model as well as on
\Lthe meta modelling level!
= bootstrapping: developing tools in their own
technology (ultimate litmus test)

ATSE (02265), L11: ECNO & Outlook 38

Model-driven Architecture (MDA)

‘ DTU Compute

M

Use models on different levels of detail and granularity
for modelling software and generating software out of
them

= CIM: Computation Independent Model what
(conceptual)

= PIM: Platform Independet Model
(technical but not platform specific)

= PSM:Platform Specific Model how

ATSE (02265), L11: ECNO & Outlook 39

SEZ2: Specifying Software

‘ DTU Compute

=
—]
=

M

G{em'\ﬂder

= Project Definition

= Requirements Specification
= rough
= detailed

= Systems specification

= Complete Models

= Implementation, Documentation
Handbook

ATSE (02265), L11: ECNO & Outlook

40

SEZ2: Specifying Software

‘ DTU Compute

G{em'\ﬂder

= Project Definition

= Requirements Specification
= rough
= detailed

= Systems specification

= Complete Models

= Implementation, Documentation
Handbook

\4

g% detailed

ATSE (02265), L11: ECNO & Outlook 41

Model-driven Architecture (MDA)

‘ DTU Compute

M

= CIM: Computation Independent Model

(conceptual) what
= PIM: Platform Independet Model
(technical but not platform specific)
. \ 4
= PSM: Platform Specific M g, only the oW

Strictly Spea
first one is M
often use the t

DA (that's why |
Two approaches: erm MBSE)
= Transformation CIM - PIM - PSM - Code

= |ncremental CIM + PIM + PSM - Code

ATSE (02265), L11: ECNO & Outlook

Domain model s

=
—]
=

M

"Domain model” vs. "Software model”

= A "software model”, in a sense, models the "how” of
the software

= A "domain model” models the "what”

ATSE (02265), L11: ECNO & Outlook 43

