

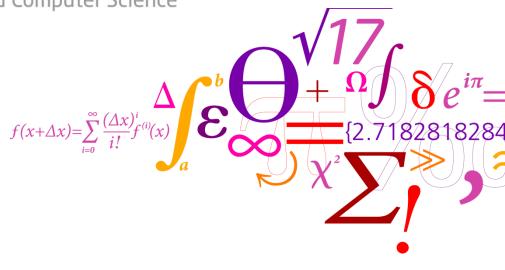
### Advanced Topics in Software Engineering (02265)

#### **Ekkart Kindler**

#### **DTU Compute**

Department of Applied Mathematics and Computer Science

Slides 82-151 provide the formalization of the concepts, Which however is not presented in the lecture in detail.





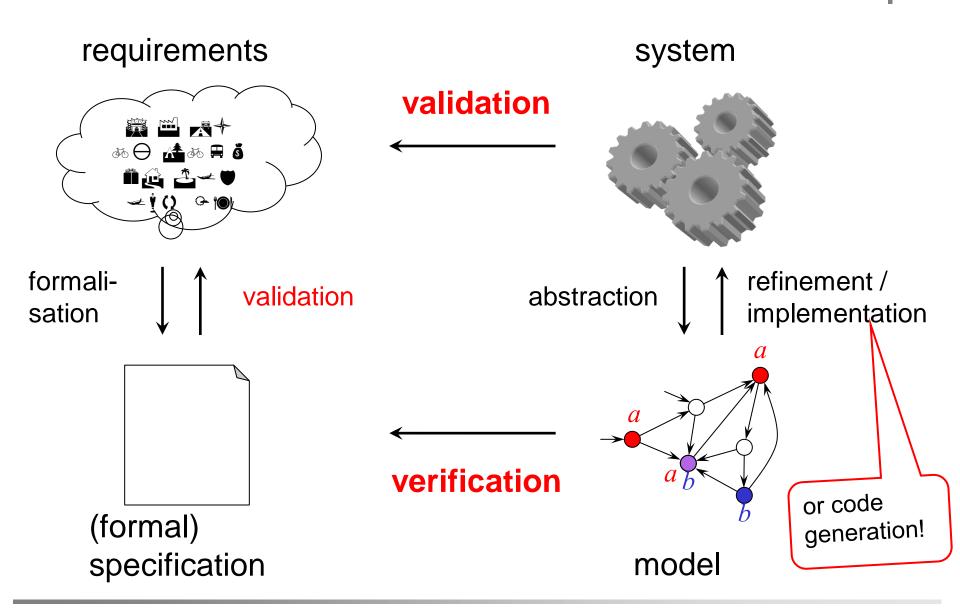
## V. Formalisation and Analysis



Model checking is a technology for the fully automatic verification of reactive systems with a finite state space.

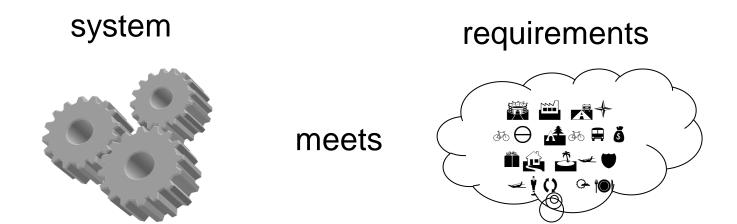
#### Validation





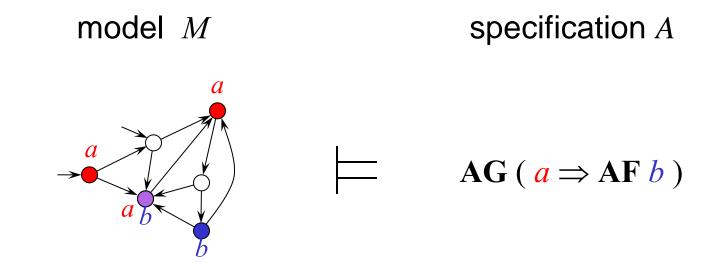


- Kripke structures (defining the system/model)
- CTL (specifying the properties)
- algorithms (only basic idea)
- complexity



DTU

 $\Xi$ 



#### Kripke structure

Computation Tree Logic (CTL)

DTU

#### Kripke Structure

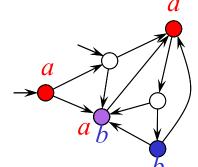
A Kripke structure consists of

- a set of **states**,
- with distinguished initial states,
- a total transition relation
- a labelling of states with a set of atomic propositions.

Total means that each state has a transition to somewhere!



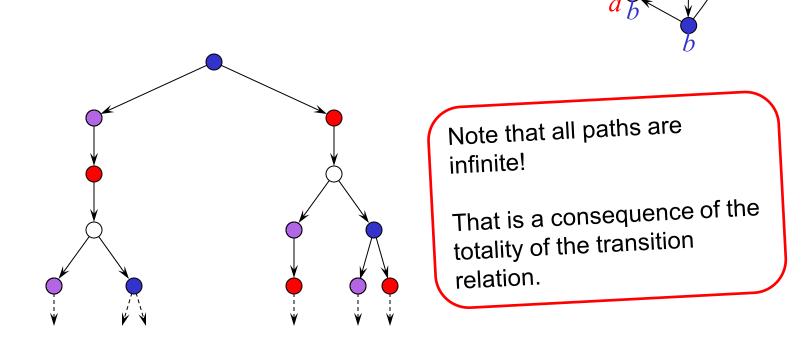
and



Department of Applied Mathematics and Computer Science

## 

# The **behaviour** at a state can be represented as a **computation tree**:





$$. \land . , . \lor . , \neg . , ...$$

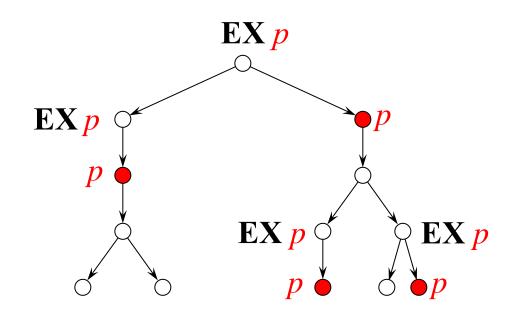
#### EX., EG., E[.U.], ...

**CTL-formulas** are inductively defined:

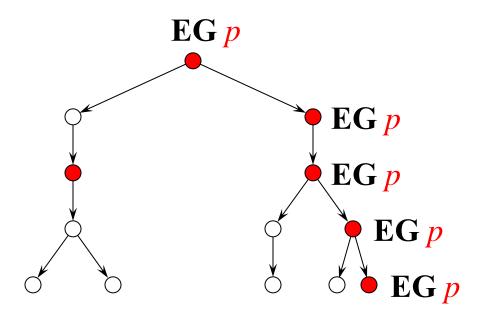
- atomic propositions are CTL-formulas
- CTL-formulas combined with a Boolean operator are CTL-formulas
- CTL-formulas combined with temporal operators are CTL-formulas



there exists an (immediate) successor in which p holds true:



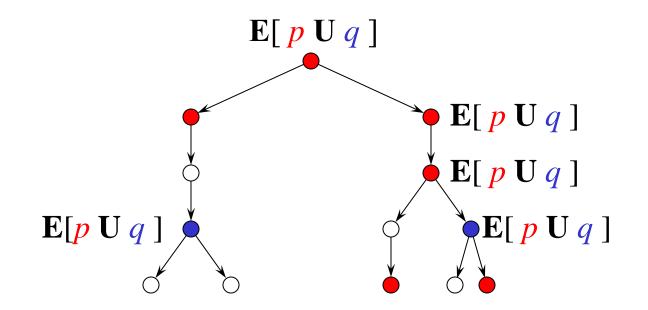
there exists an infinite path on which p holds in each state:



DTU



there exists a reachable state in which b holds true, and up to this state p holds true:





 $AX p \equiv \neg EX \neg p$ <br/>for all immediate successors, p holds true

 $\mathbf{EF} \mathbf{p} \equiv \mathbf{E} [ true \mathbf{U} \mathbf{p} ]$ 

in some reachable state, p holds true

$$\mathbf{AG}\,\boldsymbol{p}\equiv\,\neg\,\mathbf{EF}\,\neg\,\boldsymbol{p}$$

in all reachable states, p holds true

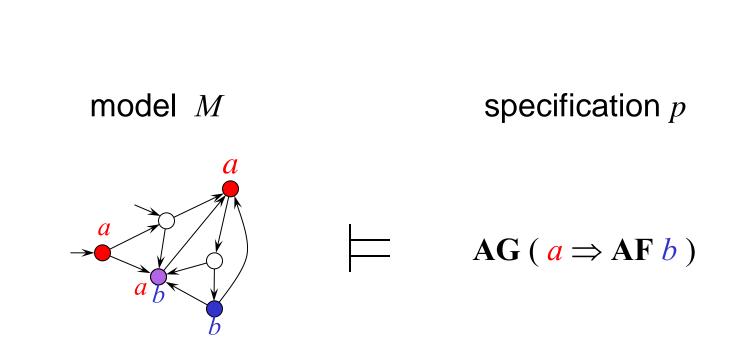
$$\mathbf{AF}\,\boldsymbol{p}\equiv\,\neg\,\mathbf{EG}\,\neg\,\boldsymbol{p}$$

on each path, there exists a state in which *p* holds true





# A CTL-formula **holds** for a Kripke structure if the formula holds in each initial state.



#### How do we prove it?

ATSE (02265), L08: Formalisation and Analysis

DTU

Ħ



For each sub-formula, we inductively calculate the **set of states**, in which this sub-formula is true:

#### atomic propositions

- Boolean operators
- temporal operators

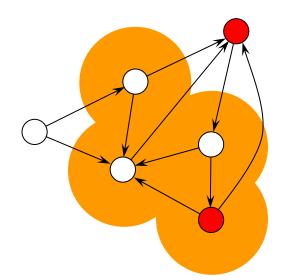
## "Algorithm" for EX p

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler





**Given**: The set of states in which p holds:  $S_p$ 

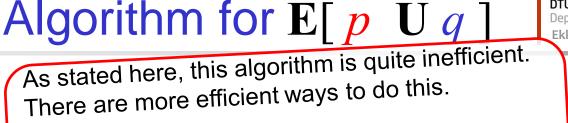


Wanted: The set of states in which EX p holds:  $S_{EX p}$ 

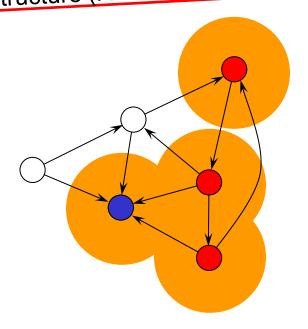
We also write  $EX(S_p)$  for  $S_{EX p}$ 



DTU



But, even this inefficient algorithm turns out to be quite efficient when used with the right data structure (ROBDDs, see 5.4).



Given:  $S_p$  und  $S_q$ Wanted:  $S_{E[p \ Uq]}$ 

$$S_0 = \emptyset$$
  

$$S_1 = S_q \cup (S_p \cap \mathbf{EX}(S_0))$$
  

$$S_2 = S_q \cup (S_p \cap \mathbf{EX}(S_1))$$
  
...  

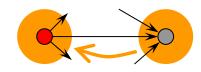
$$S_{i+1} = S_q \cup (S_p \cap \mathbf{EX}(S_i))$$

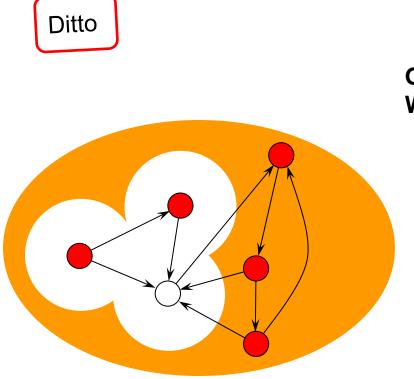
until  $S_{i+1} = S_i = S_{E[p \cup q]}$ 

## Algorithm for EG p

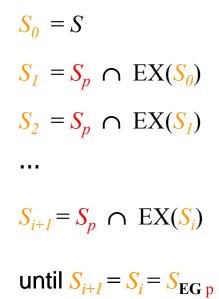
DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler







Given: Sp Wanted:  $S_{EG p}$ 



# Algorithms Summary

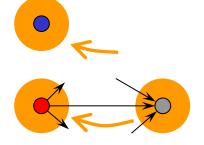
DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

CTL model checking ~ marking algorithm + iteration



EX p





#### • EG *p*

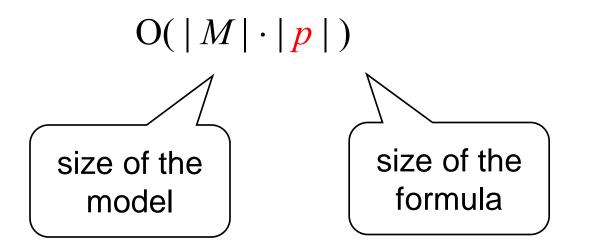


DTU





When implemented in an efficient way, the marking algorithm for each operator is linear in the number of states of the system:





When implemented in an efficient way, t algorithm for each operator is linear of the system: O(|M| = 0)nber of

- The number of states of a system is exponential in the number of its variables
- Therefore, naive model checking algorithms are doomed to fail in practice:
  - → more efficient data structures
  - improved algorithms
  - → partial investigation of state space
  - → ...



The main issue in model checking is:

# How to avoid or at least to restrict the negative effect of the state space explosion?



- Kripke Structures
- Syntactic Representation
- Examples



- Motivation
- Definition
- Computation paths
- Transition systems



There are many different notations for reactive systems; the choice depends on the application area and the purpose of the model.

Most model checking techniques are independent from the particular notation. Therefore, we do not fix a notation.

Rather we define Kripke structures as a common underlying semantic model.

S,

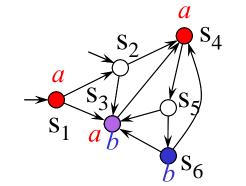
 $S_0 \subseteq S$ ,

A Kripke structure M consists of

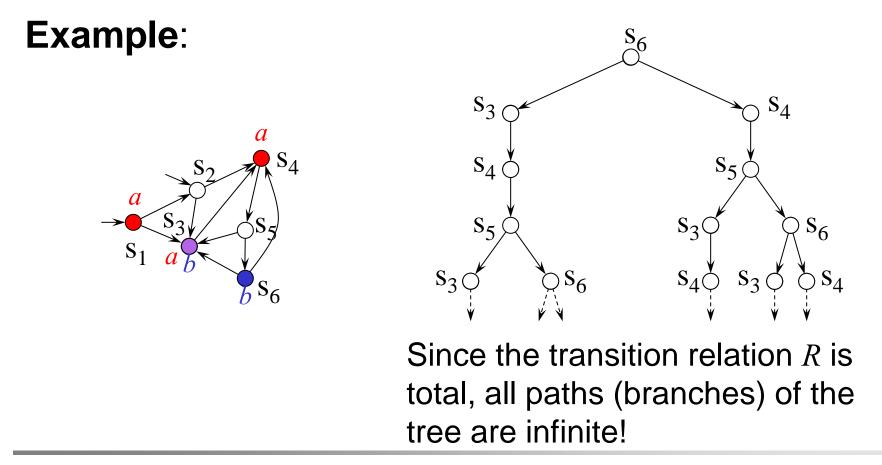
a finite set of states:

Kripke Structures

- a set of initial states:
- a total **transition relation**:  $R \subseteq S \times S$
- a **labelling** of the states with a set of **atomic propositions** AP:  $L: S \rightarrow 2^{AP}$



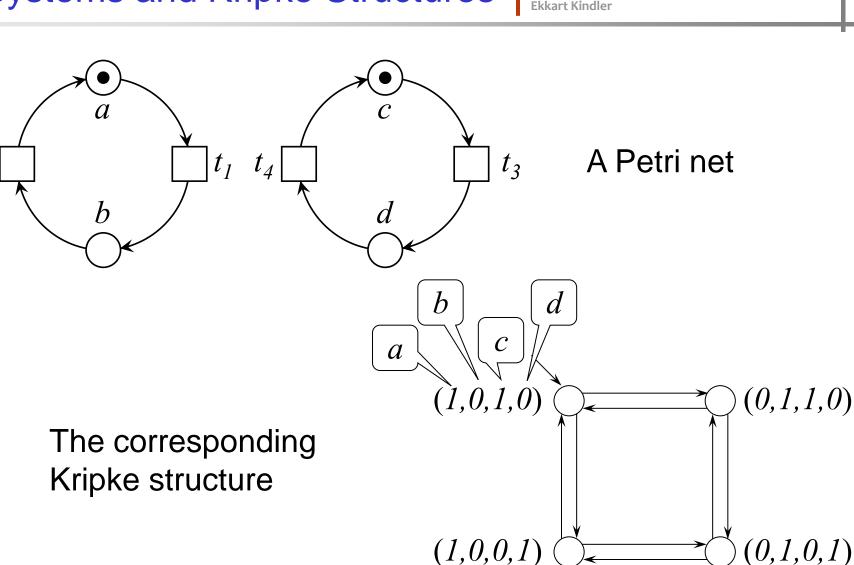
The set of all paths of *M* in a state *s* can be represented as an infinite tree, the **computation tree** of *M* in *s* :



#### Systems and Kripke Structures

 $t_2$ 

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

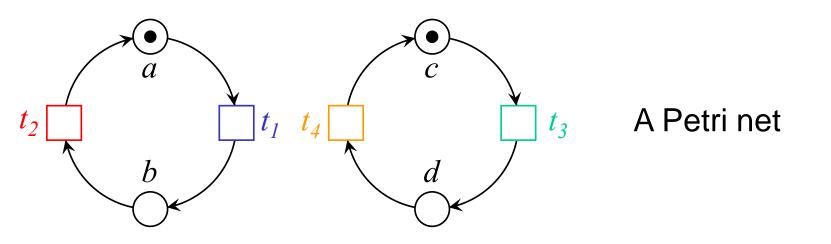


DTU

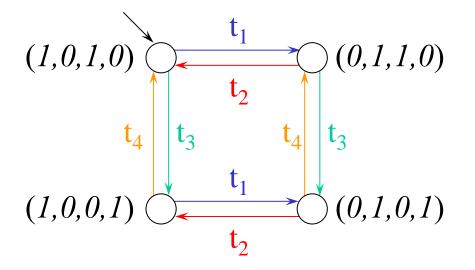
Ħ

#### Systems and Kripke Structures

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



The information on related transitions is lost in the Kripke structure!



DTU

=



- Labelling of transitions: Transition systems
- Instead of a single transition relation, there are many transition relations (in our example for every Petri net transition).

This is also important for efficiency reasons!

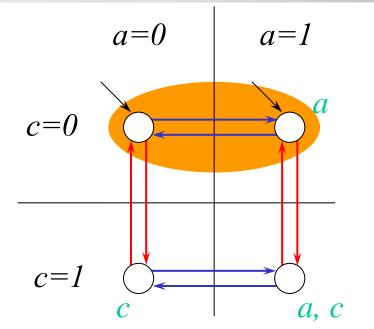


- Motivation & Example
- States
- Initial states
- Transitions
- Labels

#### Formula representation

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler





 $S = \{ (0,0), (0,1), (1,0), (1,1) \}$ 

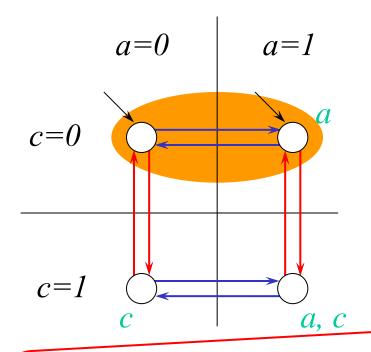
 $S_0 = \{ (0,0), (1,0) \}$ 

 $R = \left\{ \begin{array}{l} ((0,0),(1,0)), ((1,0),(0,0)), \\ ((0,1),(1,1)), ((1,1),(0,1)), \\ ((0,0),(0,1)), ((0,1),(0,0)), \\ ((1,0),(1,1)), ((1,1),(1,0)) \end{array} \right\}$ 

- Boolean variables:  $V = \{ a, c \}$
- Initial formula:  $S_0 \equiv \neg c$
- Transition formula:  $\mathcal{R} \equiv$   $(a' = \neg a \land c' = c) \lor$  $(a' = a \land c' = \neg c)$
- Implicit labelling: AP = V

## As a Transition System





This equality is often implicit for variables that do not occur "primed".

```
For example in MCiE (important for efficiency).
```

- Boolean variables:  $V = \{ a, c \}$
- Initial formula:  $S_0 \equiv \neg c$
- Transition formula:  $\mathcal{T} \equiv$ { $(a' = \neg a \land c' = c),$   $(a' = a \land c' = \neg c)$ } Implicit labelling: AP = V



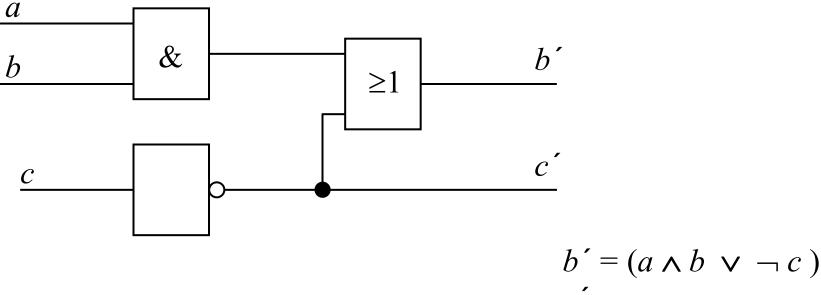
In this section, we show by the help of two examples how to represent different kinds of systems as Kripke structures represented by formulas.

- Synchronous circuit (hardware)
- Concurrent processes
- Petri nets

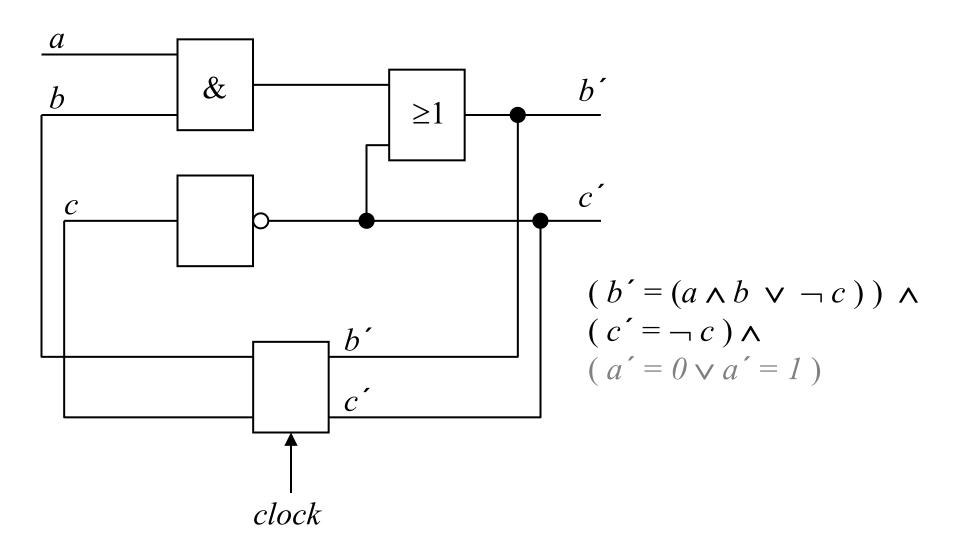
## **Combinatorial Circuit**

DTU Compute Department of Applied Mathematics and Computer Science **Ekkart Kindler** 





 $c' = \neg c$ 



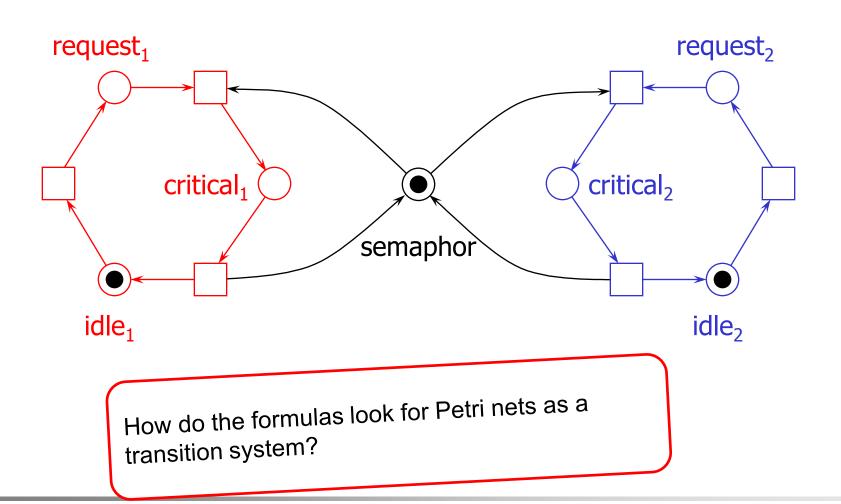
DTU

Ħ



loop foreverloop foreverpca = 0 $\mathbf{x} := 0;$ pca = 1 $\mathbf{y} := 0;$ pcb = 1 $\mathbf{y} := 1;$ pcb = 1 $\mathbf{y} := 1;$ 

$$(pca = 0 \land pca' = 1 \land x' = 0 \land y' = y \land pcb' = pcb) \lor$$
$$(pca = 1 \land pca' = 0 \land y' = 0 \land x' = x \land pcb' = pcb) \lor$$
$$(pcb = 0 \land pcb' = 1 \land x' = 1 \land y' = y \land pca' = pca) \lor$$
$$(pcb = 1 \land pcb' = 0 \land y' = 1 \land x' = x \land pca' = pca)$$



# 5.4 ROBDDs

DTU

Reduced Ordered Binary Decision Diagrams; for simplicity often just called Binary Decision Diagrams (BDDs).

- Motivation
- Definition
- Operations on ROBDDs
- Quantified Boolean formulas (QBF)

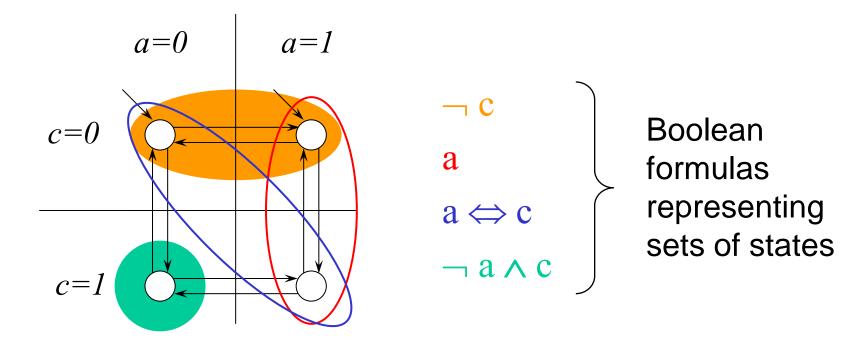


- The number of states of realistic systems is gigantic.
- ⇒Representing sets of states by enumerating every state explicitly is a bad idea.

 Sets could be represented "symbolically", e.g. by formulas (see next slide)

#### Sets as formulas

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



DTU

Ħ

#### Formulas



- Some operations on sets can be efficiently executed for sets that are represented as formulas:
  - union:  $p \lor q$
  - disjunction:  $p \land q$
  - complement:  $\neg p$
  - set difference:  $p \land \neg q$

Problem:

- the same set can have different representations
- it is extremely inefficient to find out whether two formulas represent the same set (NP-complete).
- therefore, formulas are not a good representation for sets of states.

Checking for equality of sets is a very crucial operation in model checking! (BTW: why?)  $\rightarrow$  slide 19/20 (78)

# Goal



- Representation of sets such that
  - set operations and
  - check for equality

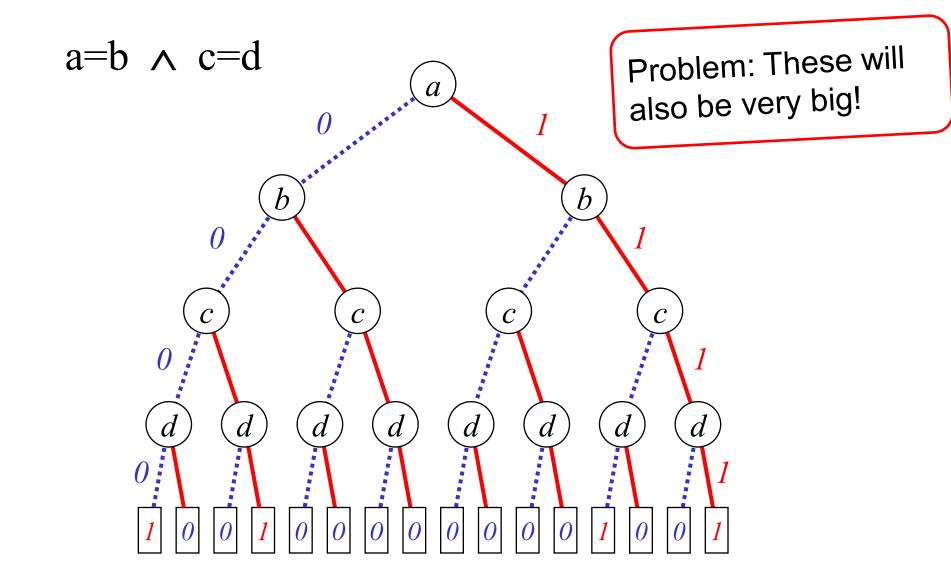
can be computed efficiently

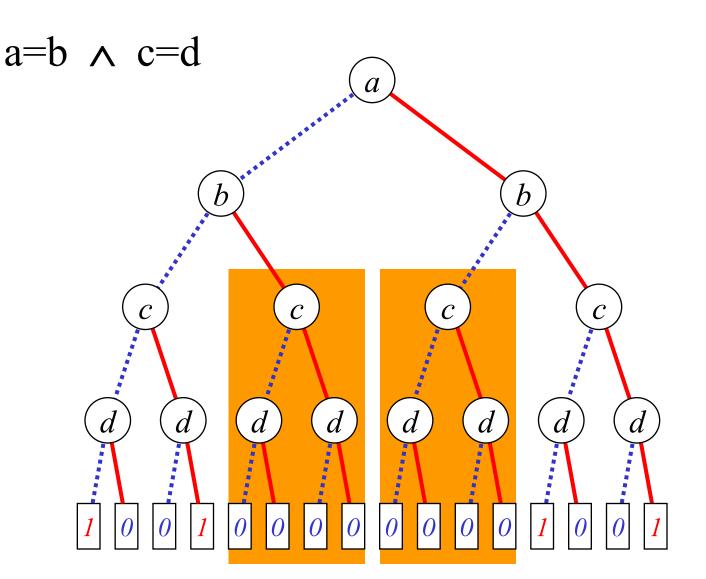
The answer will be Reduced Ordered Binary Decision Diagrams (ROBDDs)!

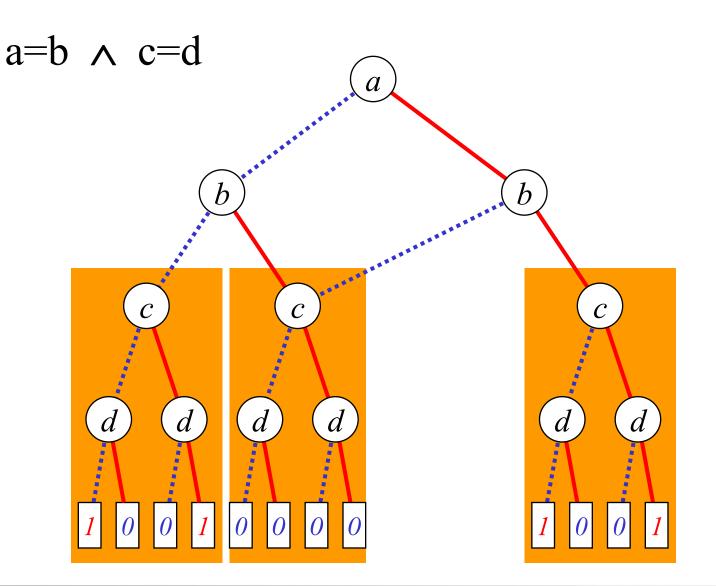
#### **Binary Decision Trees**

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

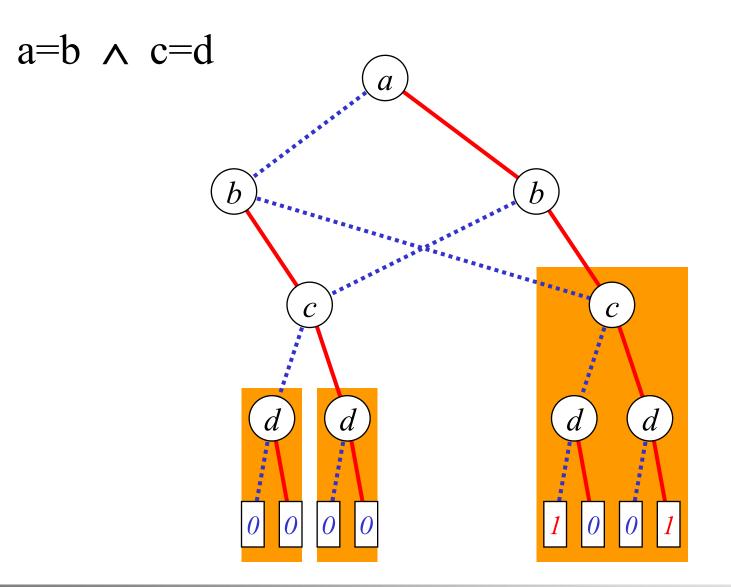




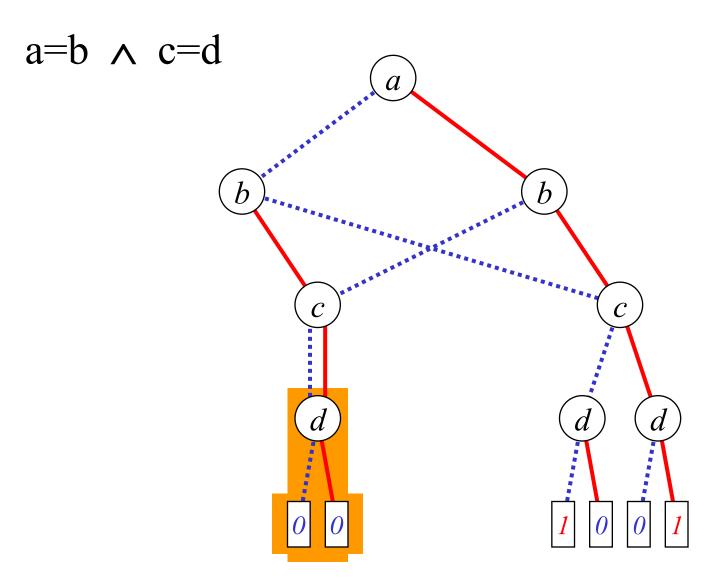


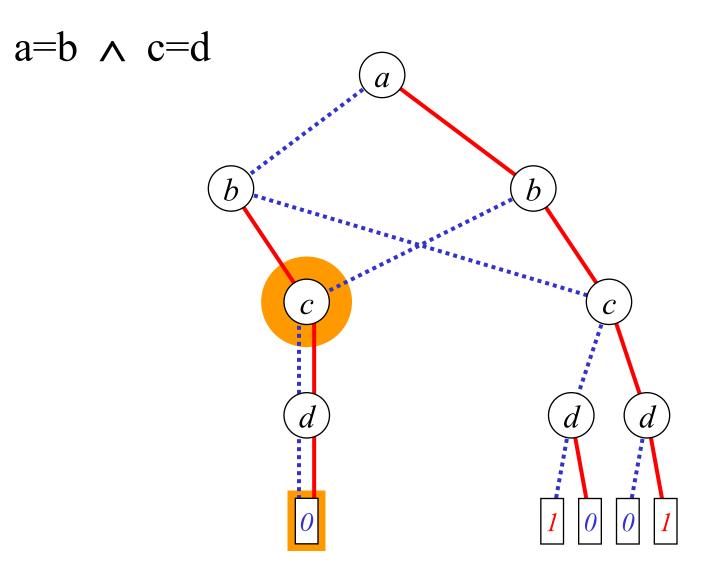


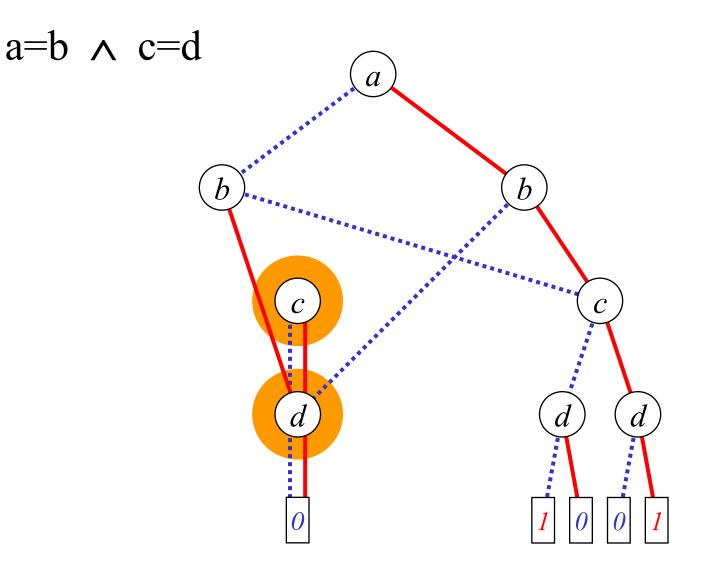
ATSE (02265), L09: Formalisation and Analysis (cntd.)

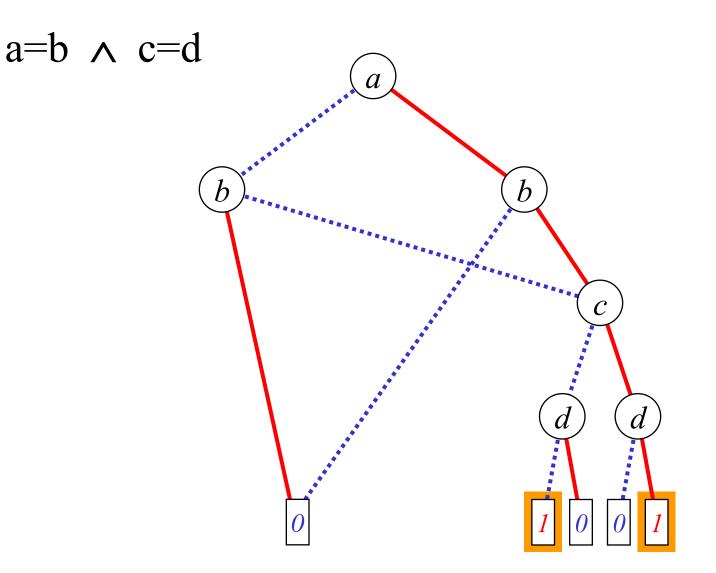


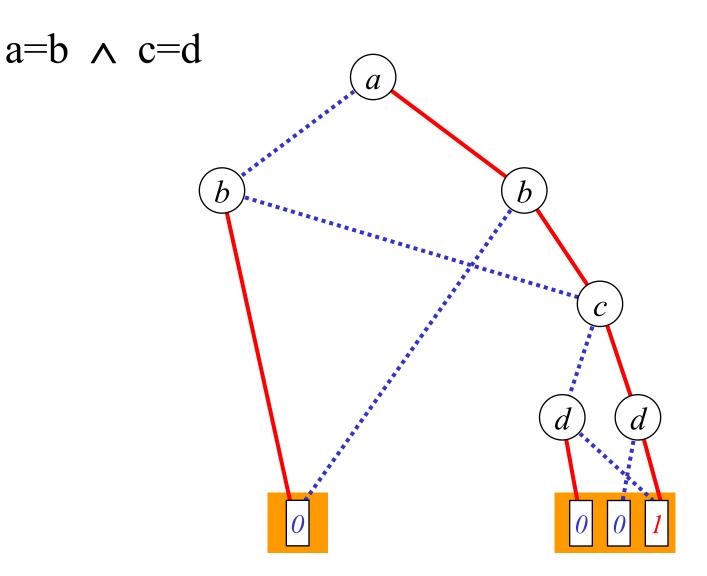
ATSE (02265), L09: Formalisation and Analysis (cntd.)



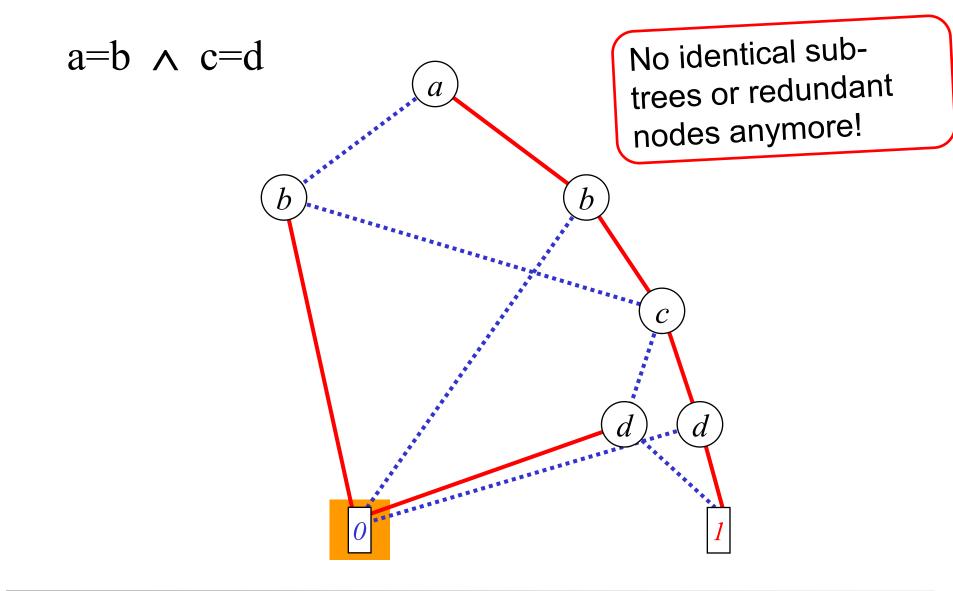




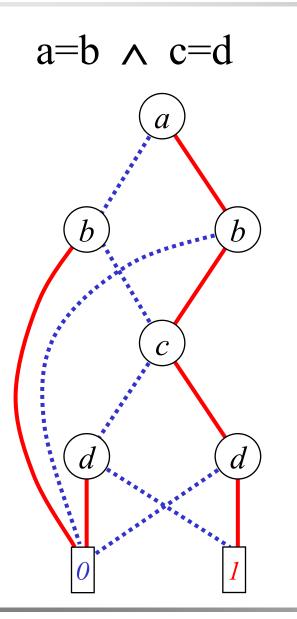












#### ROBDD

- All variables on the paths occur in the same Order (we had that from the start)
- No identical sub-graphs anymore
- No redundant nodes anymore
- ⇒ R educed Ordered Binary Decision Diagram



- For every set (and a fixed variable order) there exists exactly one ROBDD representing it!
- For many practically relevant sets, the ROBBDs representing them are small.
- The size of the ROBDDs depends on the chosen variable order (on the paths):

For example, the ROBDD for the set characterized by  $a=b \land c=d$  is small with variable order a < b < c < d; it is bigger with variable order a < c < d < b.



- There are sets for which the ROBDD will be big for any variable order (multiplication)
- Finding good or even optimal variable orders is one of the challenges of symbolic model checking
- There is no efficient way to find an optimal variable order in general (results from complexity theory)
- But, there are heuristics:
  - Variables that are "somehow related" should be close to each other
  - Local optimisations by switching two variables

# Question



How do we generate an ROBDD?

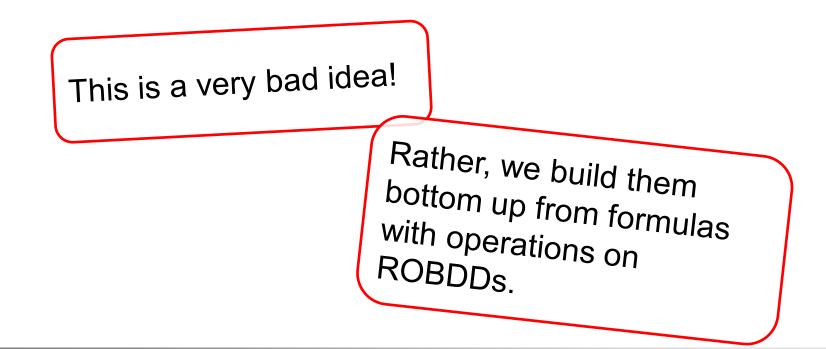
Answer: Start with full tree and reduce it!

# Question



How do we generate an ROBDD?

Answer: Start with full tree and reduce it!

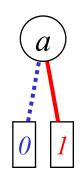




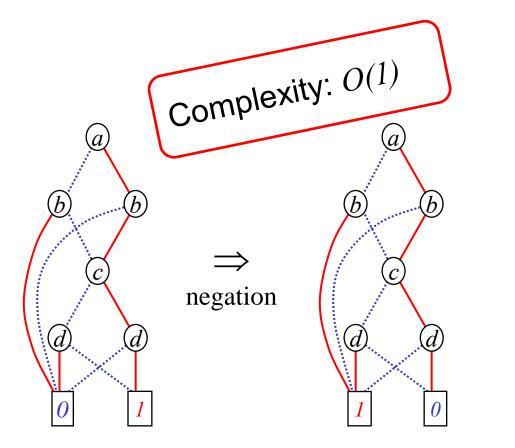
- Boolean variable
- Negation
- Restriction and Shannon expansion
- Binary operations
- ROBDDs and Kripke structures



The set represented by variable *a* is represented by the ROBBD:



# Negation

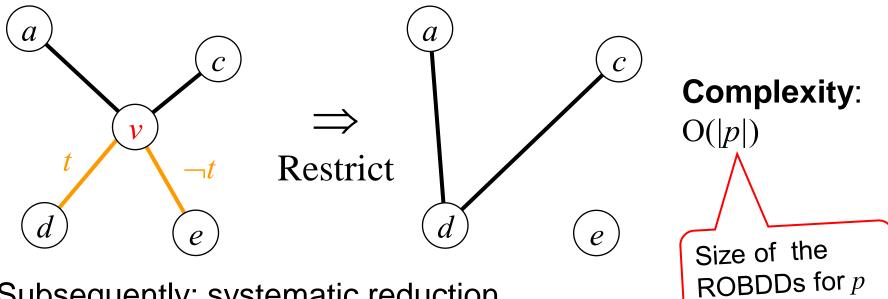




# Restriktion in ROBDDs

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

For a ROBDD representing a Boolean function p, the ROBDD for the  $p|_{v \leftarrow t}$  can be obtained as follows:



 Subsequently: systematic reduction of the resulting ROBDD.

> **Remember**: Existing ROBDDs are never changed!

In practice, this is done a bit

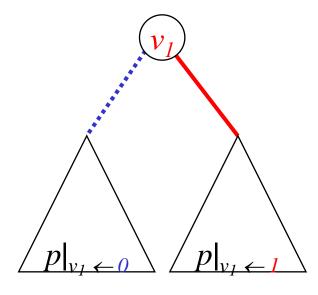
ATSE (02265), Ledifferentation and Analysis (cntd.)

**Complexity**:  $O(|p| \cdot log(/p/))$ 

DTU

An important special case is the restriction to the first variable v<sub>1</sub> of the ROBDD:

$$p|_{v_l \leftarrow 0}$$
 bzw.  $p|_{v_l \leftarrow 1}$ 

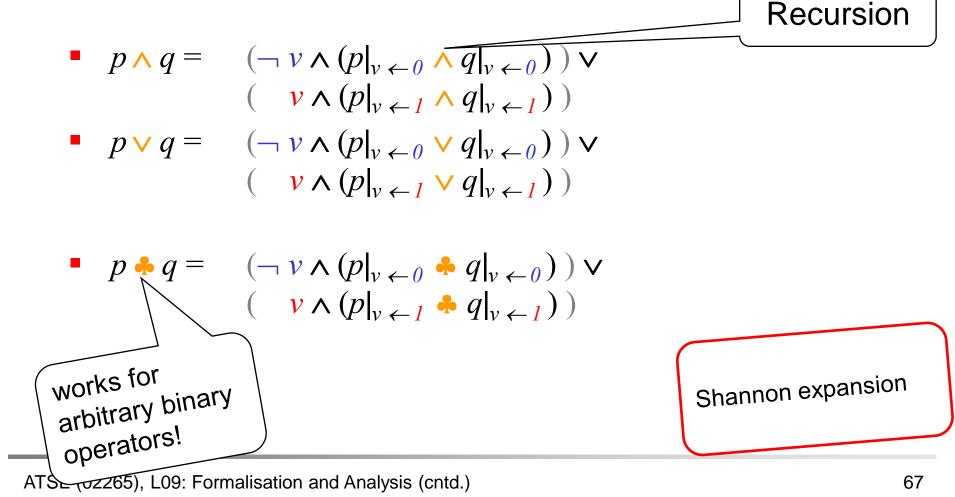


In practice, this special case is exploited.

**Compexity**: O(1)

# **Boolean operators**

- DTU
- The binary Boolean operations can be formulated recursively by the help of the Shannon expansion:



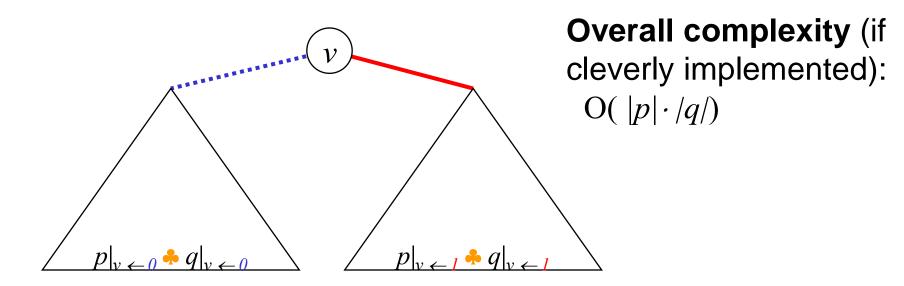
#### **Binary Boolean operations**

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



ROBDD for  $p \neq q$  from ROBDDs for p and q:

- Generate ROBDDs for  $p|_{v \leftarrow 0}$ ,  $q|_{v \leftarrow 0}$ ,  $p|_{v \leftarrow 1}$ , and  $q|_{v \leftarrow 1}$
- Construct recursively  $p|_{v \leftarrow 0} \neq q|_{v \leftarrow 0}$  and  $p|_{v \leftarrow 1} \neq q|_{v \leftarrow 1}$
- The OBDD for  $p \neq q$  is:



Reduce the OBDD systematically to an ROBDD.



- As long as all involved ROBDDs remain small, all operations on ROBDDs are efficient
- There are many libraries implementing ROBDDs and the operations on them (often with clever algorithms for optimizing the variable order). MCiE is a very simple implementation.
- In practice, all ROBDDs in the same context are maintained in a single data structure (as a "forest" of ROBDDs and hash tables for avoiding duplicate nodes). Then, equality of ROBDDs can be decided in constant time (same pointer).

- For model checking, we need Boolean formulas with quantification of Boolean variables v (QBF):
   I v. p
- $\exists v . p \text{ is just an abbreviation for } p|_{v \leftarrow 0} \lor p|_{v \leftarrow 1}$
- $\exists \underline{v} \cdot p \text{ is an abbreviation for}$  $\exists v_1 \cdot (\exists v_2 \cdot (\dots (\exists v_n \cdot p) \dots))$
- Respectively,  $\forall v . p$  stands for  $p|_{v \leftarrow 0} \land p|_{v \leftarrow 1}$
- And  $\forall \underline{v} . p$  stands for  $\forall v_1 . (\forall v_2 . (... (\forall v_n . p) ...))$



• For a formula,  $p(\underline{u},\underline{v})$  over variables U and V and a formula  $q(\underline{v},\underline{w})$  over variables V and W, we call

#### $\exists \underline{v} . p(\underline{u}, \underline{v}) \land q(\underline{v}, \underline{w})$

the **relation product** of  $p(\underline{u}, \underline{v})$  and  $q(\underline{v}, \underline{w})$ .

- The ROBDD for the relation product can be realized with the above abbreviations by the Boolean operations. That, however, is a bit inefficient.
- In practice, the relation product is implemented directly. The worst case complexity is exponential; but, it works reasonably well in many practical setting.



# Represent everything, i.e. initial condition, transition relation as well as the result, as ROBDDs:

#### Given:

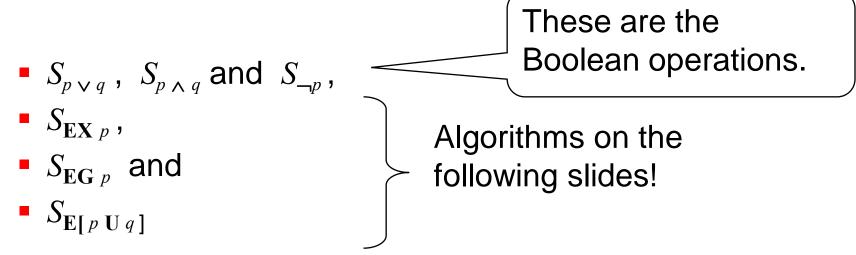
- $S_0$  and  $\mathcal{R}$  as ROBDDs over V resp.  $V \cup V'$
- a CTL-Formula *p*.

#### Wanted:

The ROBDD for the set of states S<sub>p</sub> (the set of states in which p is true).

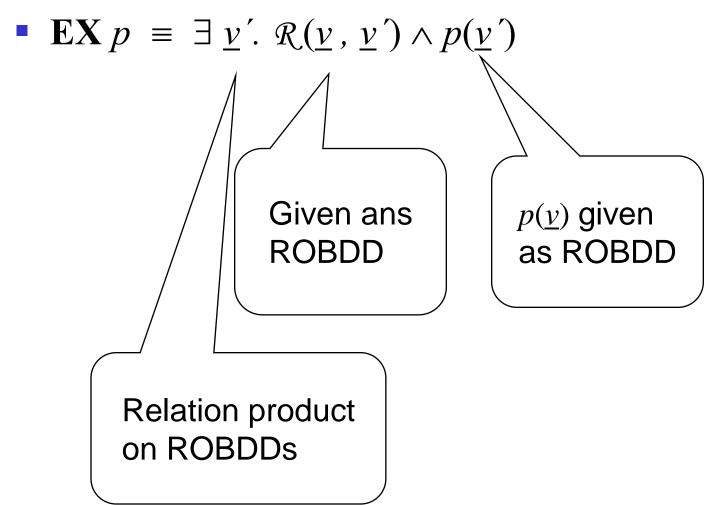
# Algorithms for CTL

- DTU
- We assume that we have calculated the ROBDDs for the sets S<sub>p</sub> and S<sub>q</sub> already
- Next we give the algorithms for calculating the ROBDDs for the sets





Observation:

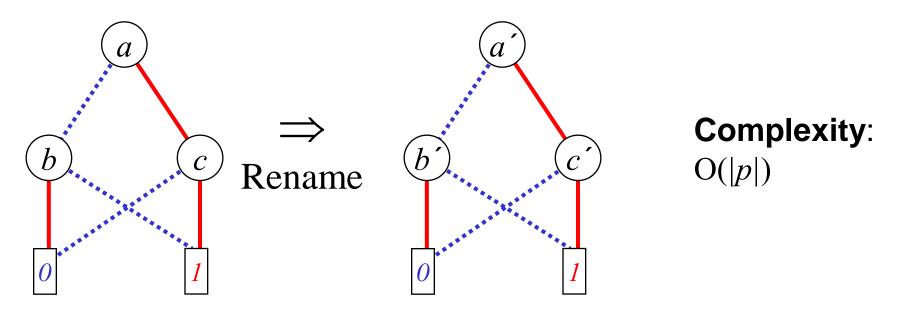


# Algorithm for EX p

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



The only thing left to do is to produce an ROBDD for p(v) from an ROBDD for p(v):

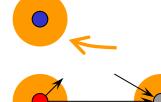


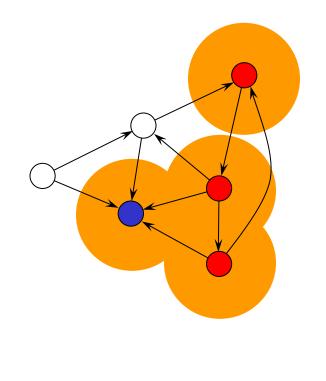
 In practice, this renaming is done on the fly (and only temporarily) when the relation product is calculated

## Reminder: E[p U q]

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler







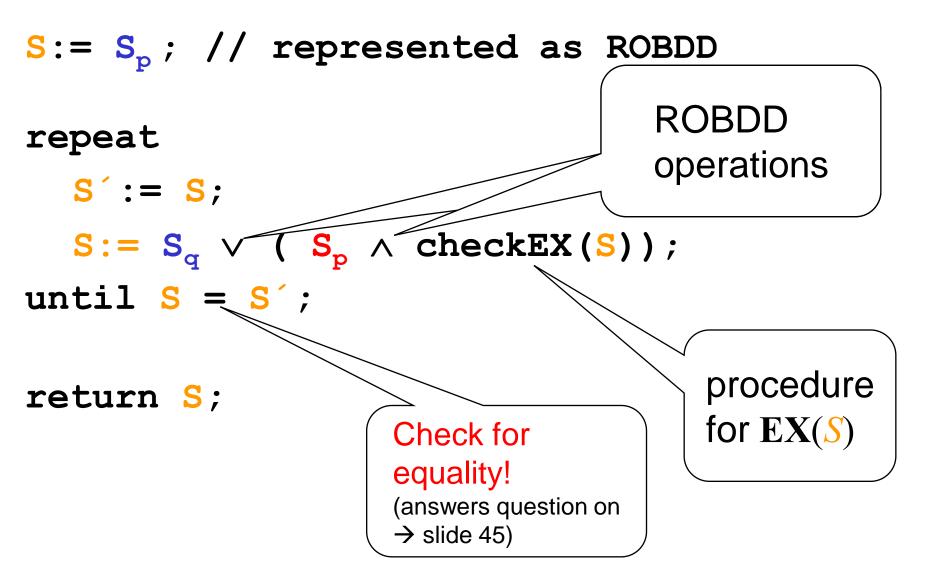
Given:  $S_p$  and  $S_q$ Wanted:  $S_{E[p \cup q]}$  $S_0 = S_a$  $S_1 = S_q \cup (S_p \cap \mathbf{EX}(S_0))$  $S_2 = S_a \cup (S_p \cap \mathbf{EX}(S_1))$  $S_{i+1} = S_a \cup (S_p \cap \mathbf{EX}(S_i))$ until  $S_{i+1} = S_i = S_{E[p \cup q]}$ 

# Algorithm for $\mathbf{E}[p \cup q]$

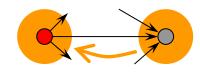
DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

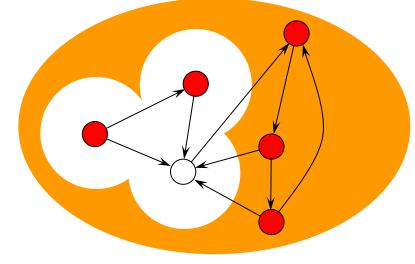
- In this algorithm, the following operations on sets (ROBDDs) occur:
  - test for equality
  - union
  - intersection
  - $\mathbf{EX}(S)$
- For all these operations, we have algorithms already (more or less efficient)
- If the iteration does not change anything (check for equality), this is the ROBDD for S<sub>E[pUq]</sub>.











Given:  $S_p$ Wanted:  $S_{EG p}$ 

This is the inefficient algorithm from the introduction.

With the help of ROBDDs it becomes reasonably efficient.

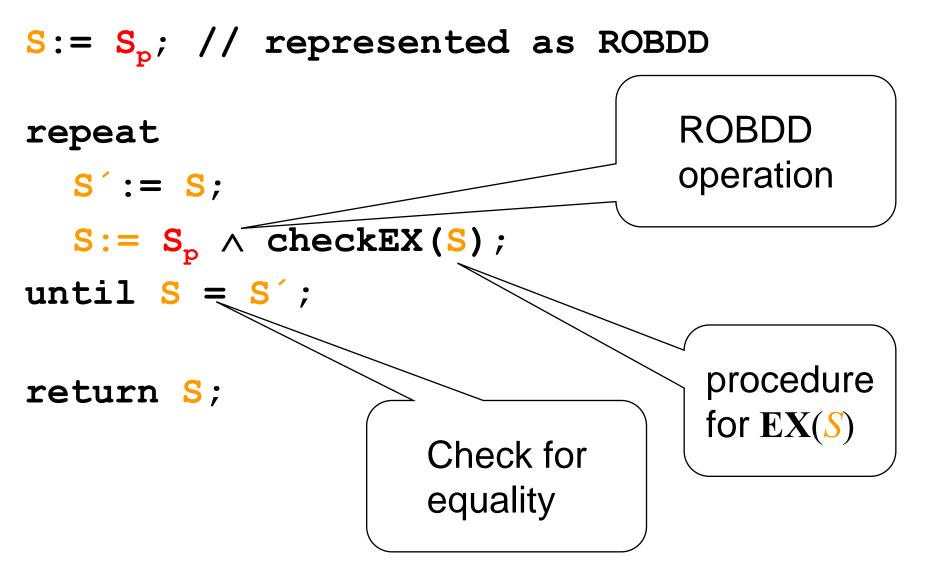
$$S_{0} = S_{p}$$

$$S_{1} = S_{p} \cap \mathbf{EX}(S_{0})$$

$$S_{2} = S_{p} \cap \mathbf{EX}(S_{1})$$

$$S_{i+1} = S_{p} \cap \mathbf{EX}(S_{i})$$
until  $S_{i+1} = S_{i} = S_{\mathbf{EG}p}$ 





#### Symbolic model checking



- The use of ROBDDs for the representation of sets of states is called symbolic model checking (as in contrast to explicit model checking).
- Symbolic model checking contributed to the initial success of model checking (SMV and today NuSMV)!
- Though it uses more inefficient algorithms as one would use with explicit sets, symbolic model checking is sometimes more efficient (but that depends!).
- It does not work always (for bigger examples).
- There are many other techniques for model checking!
- To date, applying model checking for realistic systems requires much experience.



The following slides are covering the mathematical formalisation and some additional details; The are not shown in the lecture, but are included

For completness sake.



- Kripke Structures
- Syntactic Representation
- Examples

Rather, we build them bottom up from formulas with operations on ROBDDs.



- Motivation
- Definition
- Computation paths
- Transition systems



There are many different notations for reactive systems; the choice depends on the application area and the purpose of the model.

Most model checking techniques are independent from the particular notation. Therefore, we do not fix a notation.

Rather we define **Kripke structures** as a common underlying **semantic model**.

S,

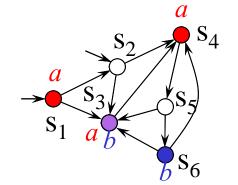
 $S_0 \subseteq S$ ,

A Kripke structure M consists of

a finite set of states:

Kripke Structures

- a set of initial states:
- a total **transition relation**:  $R \subseteq S \times S$
- a **labelling** of the states with a set of **atomic propositions** AP:  $L: S \rightarrow 2^{AP}$



We call  $M = (S, S_0, R, L)$  a Kripke structure over the atomic propositions AP.

We say that

- proposition  $a \in AP$  is valid in a state  $s \in S$ , if  $a \in L(s)$ , i.e. if a is one of the labels of s.
- state  $s' \in S$  is successor state of state  $s \in S$ , if  $(s, s') \in R$ .



#### Remarks:

- For technical reasons, we require that the transition relation *R* is total; i.e. for each state *s* ∈ *S* there exists a successor state.
- In principle, we could avoid this restriction.

#### Paths



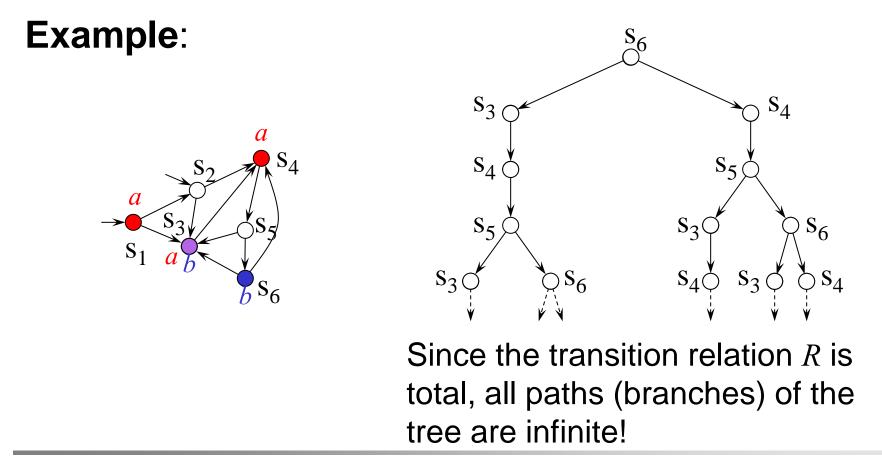
For a Kripke structure  $M = (S, S_0, R, L)$  we call an infinite sequence over S

 $\pi = s_0 \, s_1 s_2 s_3 \dots$ 

a **path** of M in  $s_0$ , if for each  $i \in \mathbb{N}$  state is a successor of  $s_i$ ; i.e. if  $(s_i, s_{i+1}) \in R$ 

A path starting in an initial state of *M* is called a **run** of *M*.

The set of all paths of *M* in a state *s* can be represented as an infinite tree, the **computation tree** of *M* in *s* :



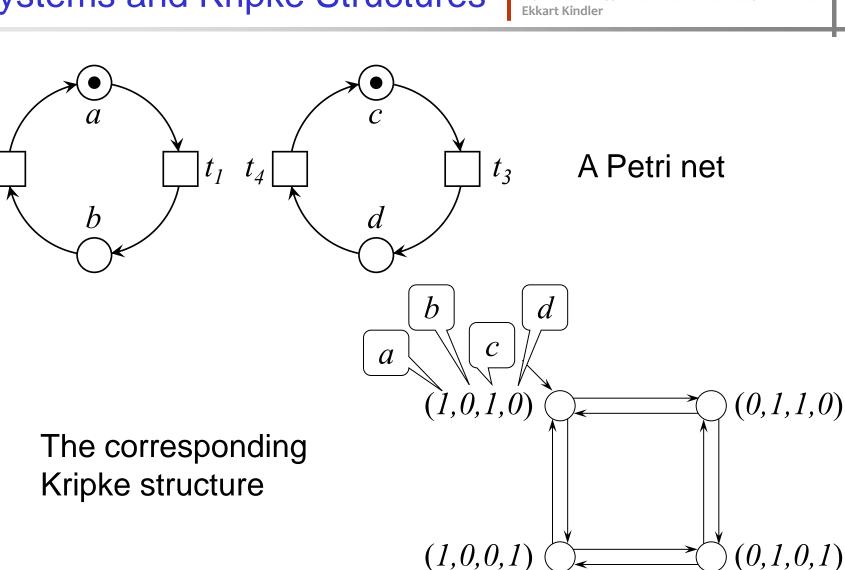


- A system resp. a model of a system in another notation can be easily mapped to a Kripke structure (provided that the model is finite).
- Sometimes some information of the model will be lost.
  - $\rightarrow$  Example on next slide

#### Systems and Kripke Structures

 $t_2$ 

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

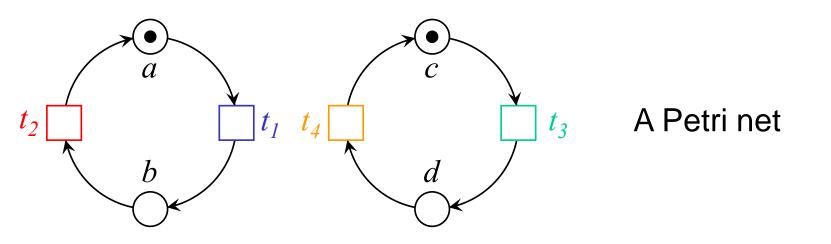


DTU

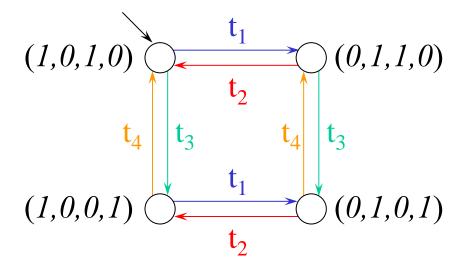
Ħ

#### Systems and Kripke Structures

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



The information on related transitions is lost in the Kripke structure!



DTU

=



- Labelling of transitions: Transition systems
- Instead of a single transition relation, there are many transition relations (in our example for every Petri net transition).

This is also important for efficiency reasons!



- Motivation & Example
- States
- Initial states
- Transitions
- Labels

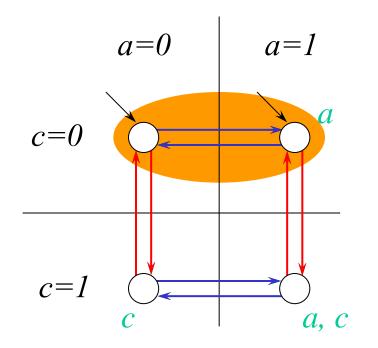
### **Motivation**



- Kripke structures are a semantic model for reactive systems (a mathematical structure).
- For real (and large) systems, an explicit enumeration of all states and all transitions is tedious (→ state space explosion).
- Therefore, we use a notation from logic, for representing Kripke structures and transition systems in a more compact way.

### Example





- Boolean variables:
   V = { a, c }
- Initial formula:  $S_0 \equiv \neg c$
- Transition formula:  $\mathcal{R} \equiv$   $(a' = \neg a \land c' = c) \lor$  $(a' = a \land c' = \neg c)$
- Implicit labelling: AP = V

0 = false1 = true

### States



- Let  $V = \{v_1, ..., v_n\}$  be a set of Boolean variables.
- We call a mapping  $\sigma: V \rightarrow \mathbf{B}$  an assignment for variables V.

**B** = { 0, 1 } denotes the set of Booleans or truth values (with 0 = false and 1 = true ).

- Each assignment can be considered as a state.
- This way, the set *V* implicitly defines a set of states  $S = \{ \sigma | \sigma : V \rightarrow \mathbf{B} \}.$



- The (propositional) formulas over variables V are defined as usual.
- Likewise, the validity of a formula *p* under some assignment σ is defined as usual; we write σ⊨ *p*, if *p* is valid at σ.
- A formula  $S_0$  over V, the **initial formula**, defines the set of initial states:  $S_0 = \{ \sigma | \sigma \models S_0 \}.$

## **Transition relation**

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

 For a set of variables we define the set of primed variables.

$$V = \{ v_1, \dots, v_n \}, V' = \{ v'_1, \dots, v'_n \}$$

#### Idea:

- Assignment for V : source state of the transition
- Assignment for V': target state of the transition



- An assignment for variables V ∪ V' can be represented as a pair of assignments (σ, σ') for V:
  - $\sigma(v)$  defines the value for v
  - $\sigma'(v)$  defines the value for v'
- The validity of formula *p* over *V* ∪ *V*' for a pair of assignments (σ, σ') can be defined as usual : We write (σ, σ') ⊨ *p*, if *p* is valid for (σ, σ')



A formula R over V \convV, the transition formula, defines the transition relation of a Kripke structure in the following way:

$$R = \{ (\sigma, \sigma') \mid (\sigma, \sigma') \models \mathcal{R} \}$$

## Labelling



The labelling of the states (assignment) can be directly derived from the assignment:

AP = V

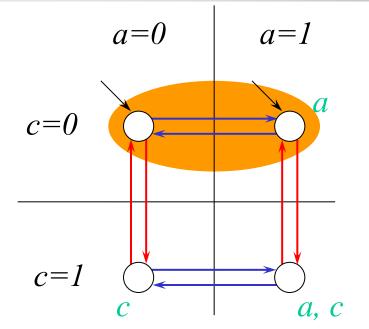
 $L(\sigma) = \{ v \in V \mid \sigma(v) = 1 \} = \{ v \in V \mid \sigma \models v \}$ 

i.e. each state (assignment) is labelled with those variables that are true in this assignment

## Summary







 $S = \{ (0,0), (0,1), (1,0), (1,1) \}$ 

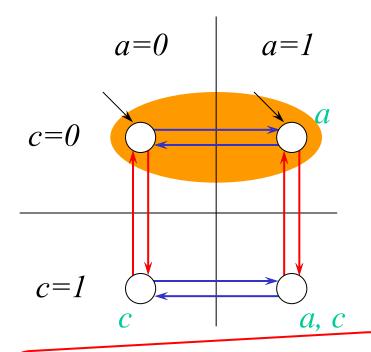
 $S_0 = \{ (0,0), (1,0) \}$ 

 $R = \left\{ \begin{array}{l} ((0,0),(1,0)), ((1,0),(0,0)), \\ ((0,1),(1,1)), ((1,1),(0,1)), \\ ((0,0),(0,1)), ((0,1),(0,0)), \\ ((1,0),(1,1)), ((1,1),(1,0)) \end{array} \right\}$ 

- Boolean variables:
   V = { a, c }
- Initial formula:  $S_0 \equiv \neg c$
- Transition formula:  $\mathcal{R} \equiv$   $(a' = \neg a \land c' = c) \lor$  $(a' = a \land c' = \neg c)$
- Implicit labelling: AP = V

## As a Transition System





This equality is often implicit for variables that do not occur primed.

```
For example in MCiE (important for efficiency).
```

- Boolean variables:  $V = \{ a, c \}$
- Initial formula:  $S_0 \equiv \neg c$
- Transition formula:  $\mathcal{T} \equiv$ { ( $a' = \neg a \land c' = c$ ),  $(a' = a \land c' = \neg c$ ) } Implicit labelling: AP = V



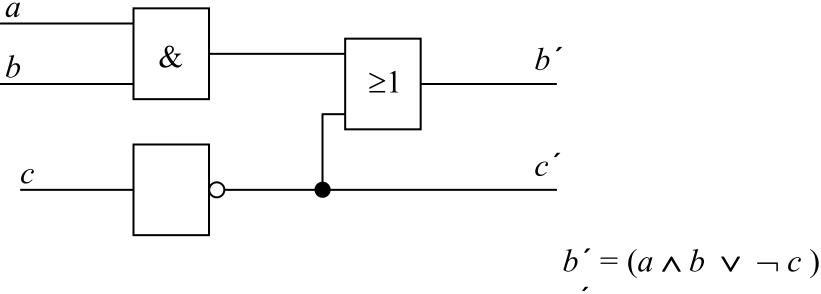
In this section, we show by the help of two examples how to represent different kinds of systems as Kripke structures represented by formulas.

- Synchronous circuit (hardware)
- Concurrent processes
- Petri nets

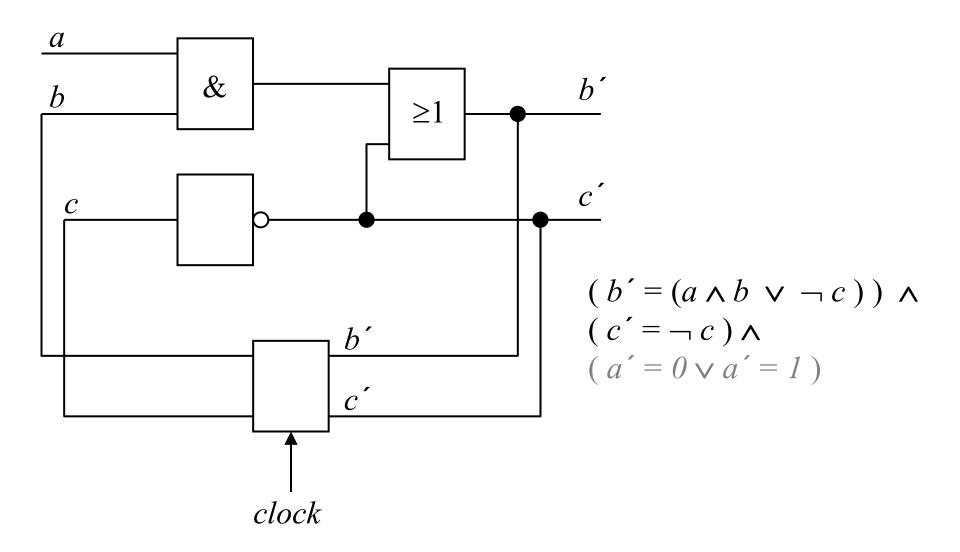
### **Combinatorial Circuit**

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler





 $c' = \neg c$ 



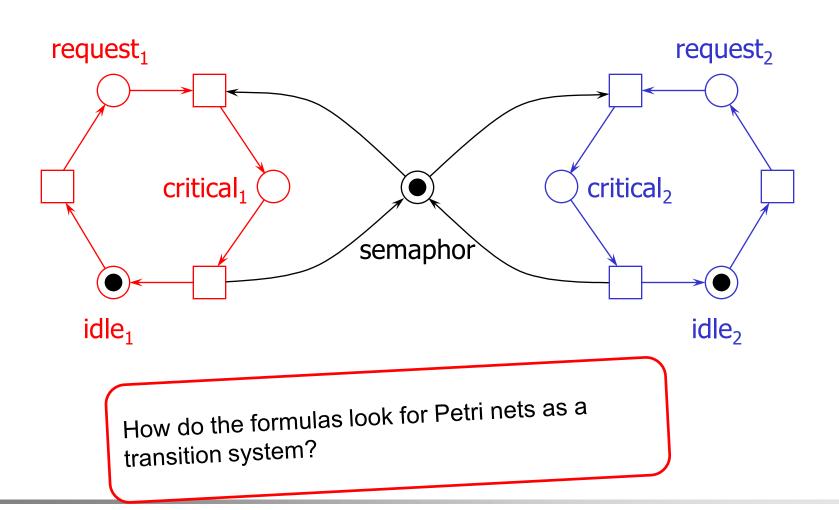
DTU

Ħ



loop foreverloop foreverpca = 0 $\mathbf{x} := 0;$ pca = 1 $\mathbf{y} := 0;$ pcb = 1 $\mathbf{y} := 1;$ pcb = 1 $\mathbf{y} := 1;$ 

$$(pca = 0 \land pca' = 1 \land x' = 0 \land y' = y \land pcb' = pcb) \lor$$
$$(pca = 1 \land pca' = 0 \land y' = 0 \land x' = x \land pcb' = pcb) \lor$$
$$(pcb = 0 \land pcb' = 1 \land x' = 1 \land y' = y \land pca' = pca) \lor$$
$$(pcb = 1 \land pcb' = 0 \land y' = 1 \land x' = x \land pca' = pca)$$



# 5.4 ROBDDs (details)

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

DTU

Reduced Ordered Binary Decision Diagrams; for simplicity often just called Binary Decision Diagrams (BDDs).

- Motivation
- Definition
- Operations on ROBDDs
- Quantified Boolean formulas (QBF)

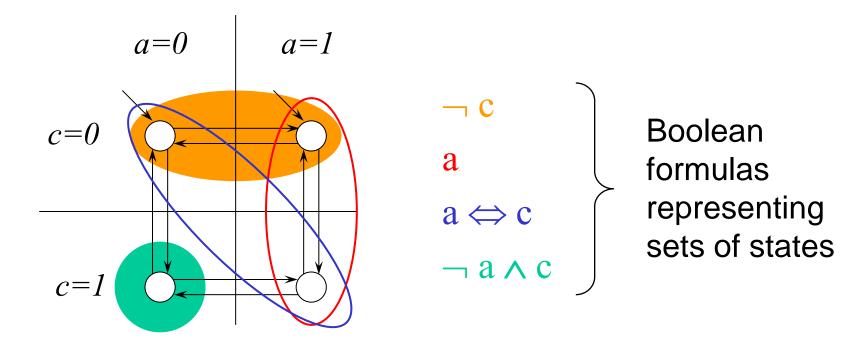


- The number of states of realistic systems is gigantic.
- ⇒Representing sets of states by enumerating every state explicitly is a bad idea.

 Sets could be represented "symbolically", e.g. by formulas (see next slide)

## Sets as formulas

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



DTU

Ħ

### Formulas



- Some operations on sets can be efficiently executed for sets that are represented as formulas:
  - union:  $p \lor q$
  - disjunction:  $p \land q$
  - complement:  $\neg p$
  - set difference:  $p \land \neg q$

Problem:

- the same set can have different representations
- it is extremely inefficient to find out whether two formulas represent the same set (NP-complete).
- therefore, formulas are not a good representation for sets of states.

Checking for equality of sets is a very crucial operation in model checking! (BTW: why?)  $\rightarrow$  slide 19/77

# Goal



- Representation of sets such that
  - set operations and
  - check for equality

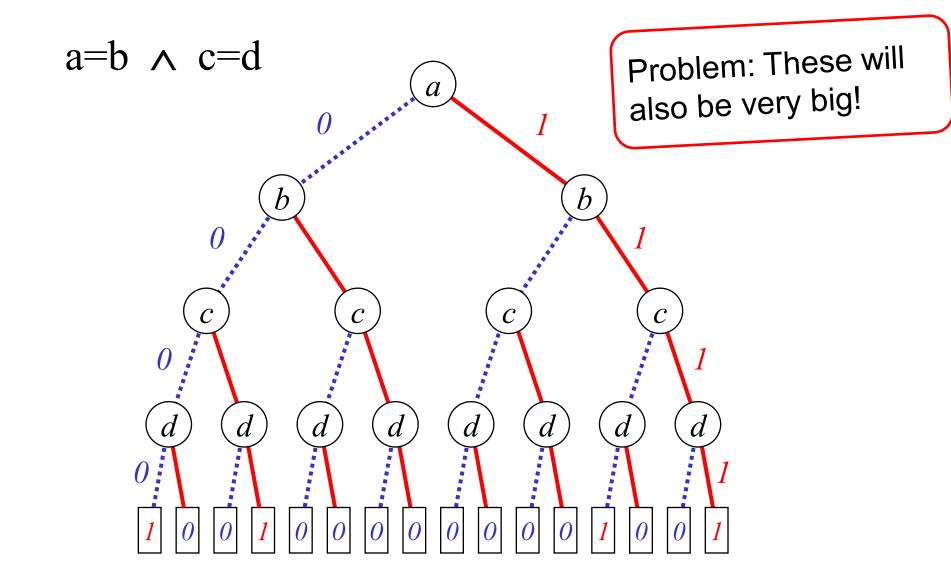
can be computed efficiently

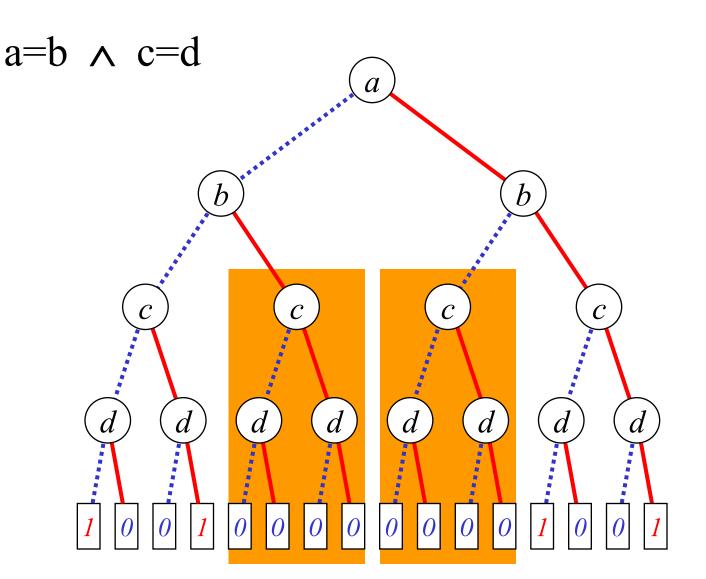
The answer will be Reduced Ordered Binary Decision Diagrams (ROBDDs)!

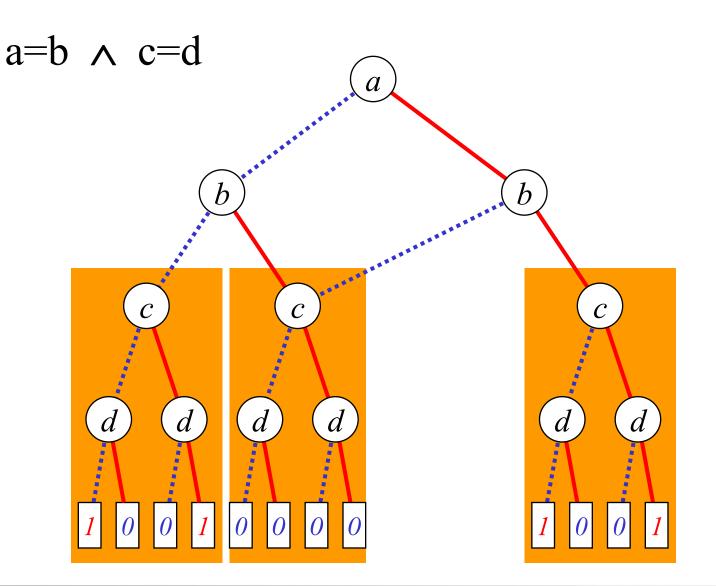
#### **Binary Decision Trees**

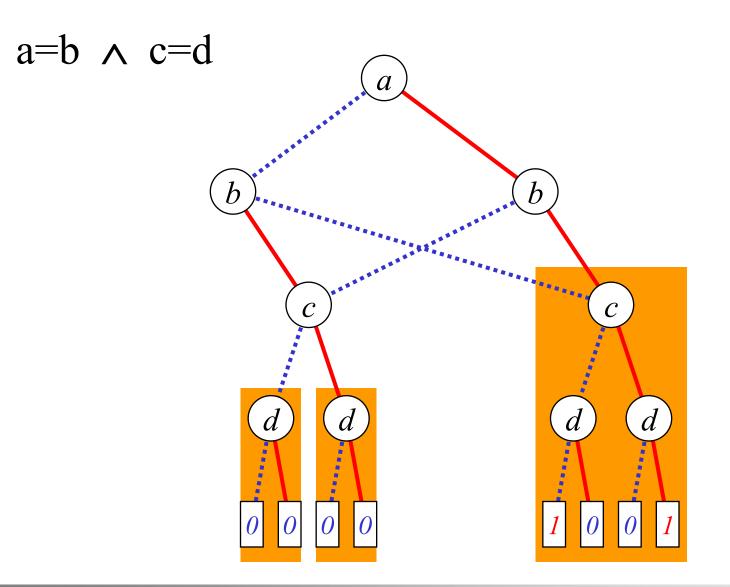
DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



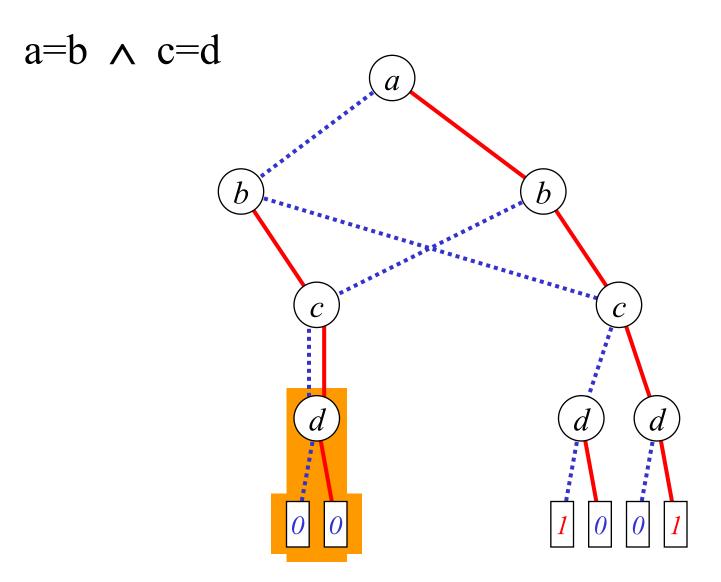


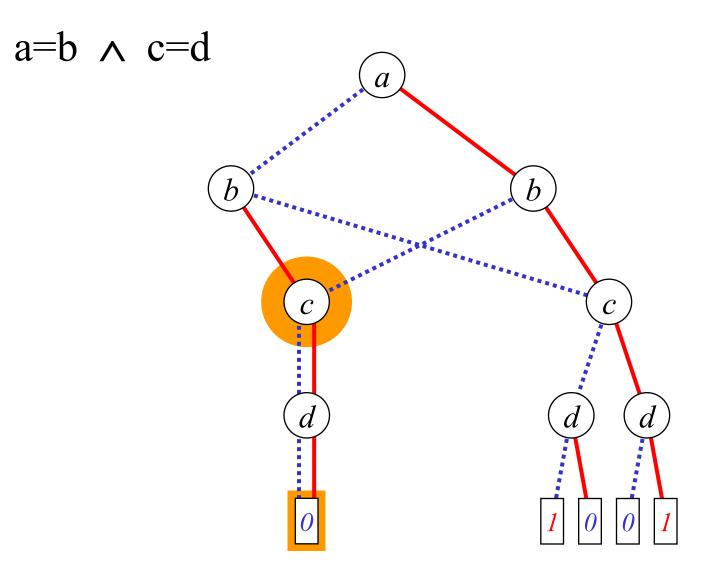


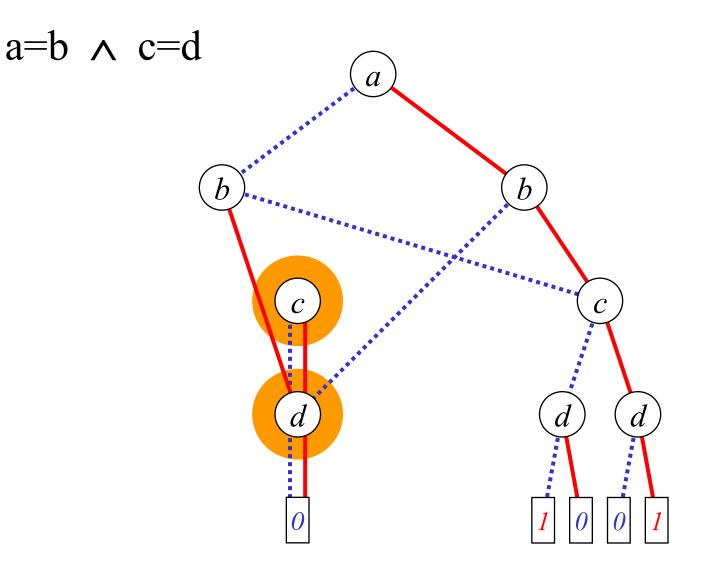


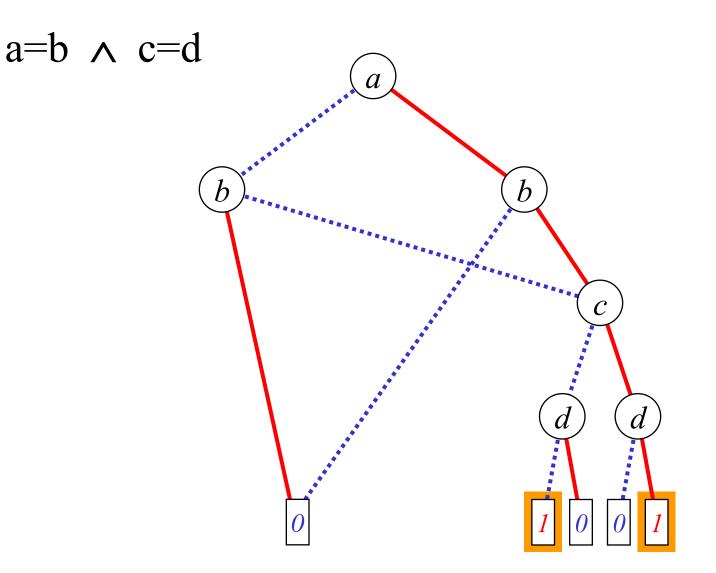


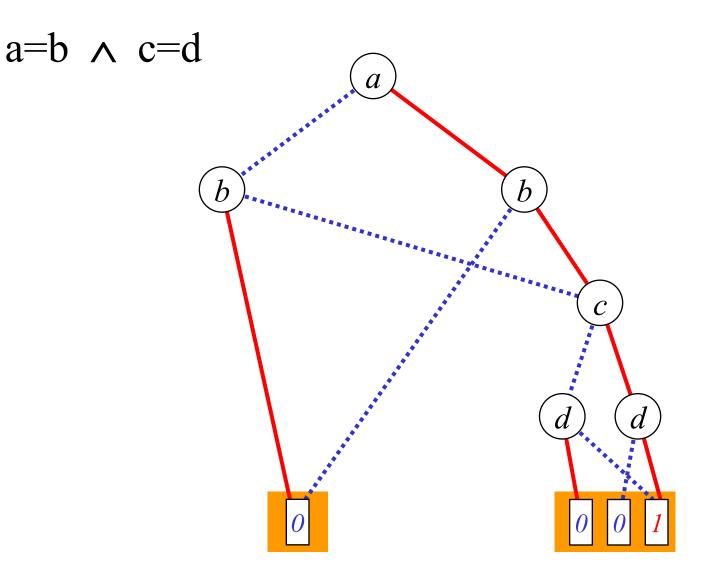
ATSE (02265), L09: Formalisation and Analysis (cntd.)



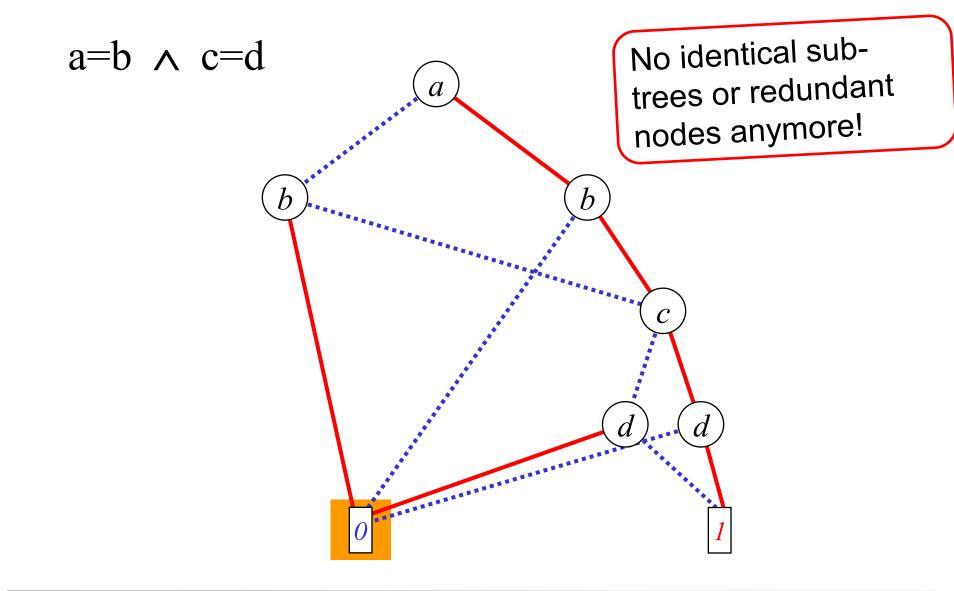




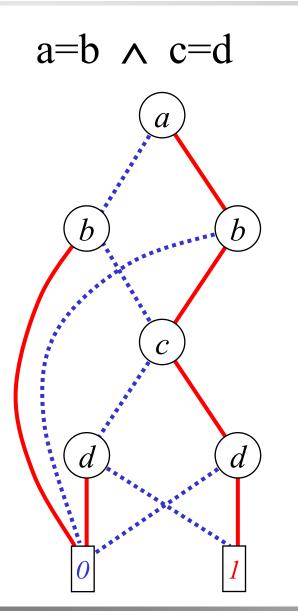












#### ROBDD

- All variables on the paths occur in the same Order (we had that from the start)
- No identical sub-graphs anymore
- No redundant nodes anymore
- ⇒ R educed Ordered Binary Decision Diagram



- For every set (and a fixed variable order) there exists exactly one ROBDD representing it!
- For many practically relevant sets, the ROBBDs representing them are small.
- The size of the ROBDDs depends on the chosen variable order (on the paths):

For example, the ROBDD for the set characterized by  $a=b \land c=d$  is small with variable order a < b < c < d; it is bigger with variable order a < c < d < b.



- There are sets for which the ROBDD will be big for any variable order (multiplication)
- Finding good or even optimal variable orders is one of the challenges of symbolic model checking
- There is no efficient way to find an optimal variable order in general (results from complexity theory)
- But, there are heuristics:
  - Variables that are "somehow related" should be close to each other
  - Local optimisations by switching two variables

# Question



How do we generate an ROBDD?

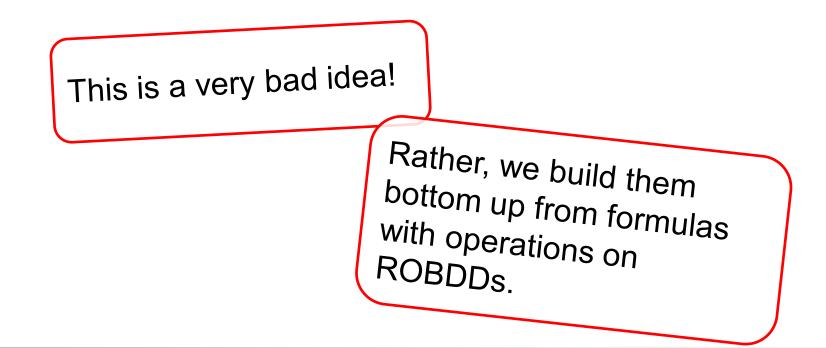
Answer: Start with full tree and reduce it!

# Question



How do we generate an ROBDD?

Answer: Start with full tree and reduce it!

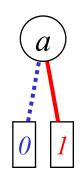




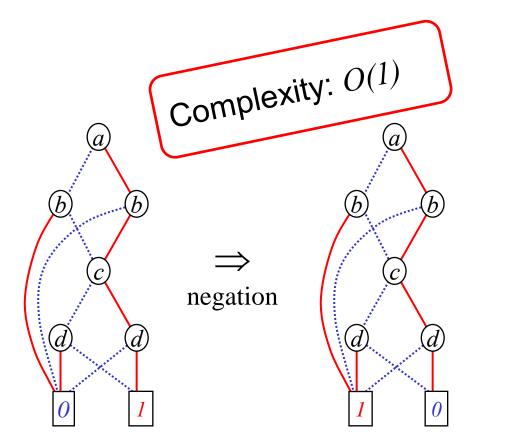
- Boolean variable
- Negation
- Restriction and Shannon expansion
- Binary operations
- ROBDDs and Kripke structures



The set represented by variable *a* is represented by the ROBBD:



# Negation





• For a set (resp. Boolean function) p over variables  $v_1, \ldots, v_n$  and a Boolean value  $t \in \mathbf{B}$ , we define the Boolean function  $p|_{v_i \leftarrow t}$  by

$$p|_{v_i \leftarrow t}(v_l, \dots, v_n) = p(v_l, \dots, v_{i-1}, t, v_{i+1}, \dots, v_n)$$

- $p|_{v_i \leftarrow t}$  is called **restriction** of p.
- It holds (Shannon expansion of p):

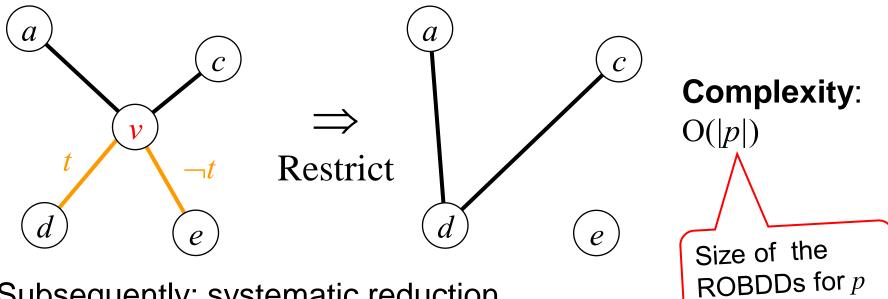
$$p = (\neg v \land p|_{v \leftarrow 0}) \lor (v \land p|_{v \leftarrow 1})$$

This is like an "if-then-else" in logics.

# Restriktion in ROBDDs

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

For a ROBDD representing a Boolean function p, the ROBDD for the  $p|_{v \leftarrow t}$  can be obtained as follows:



 Subsequently: systematic reduction of the resulting ROBDD.

> **Remember**: Existing ROBDDs are never changed!

In practice, this is done a bit

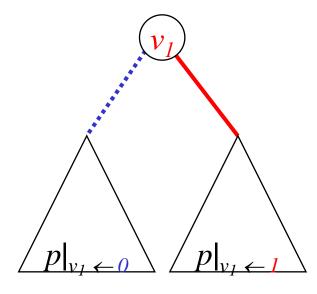
ATSE (02265), Ledifferentation and Analysis (cntd.)

**Complexity**:  $O(|p| \cdot log(/p/))$ 

DTU

An important special case is the restriction to the first variable v<sub>i</sub> of the ROBDD:

$$p|_{v_l \leftarrow 0}$$
 bzw.  $p|_{v_l \leftarrow 1}$ 



In practice, this special case is exploited.

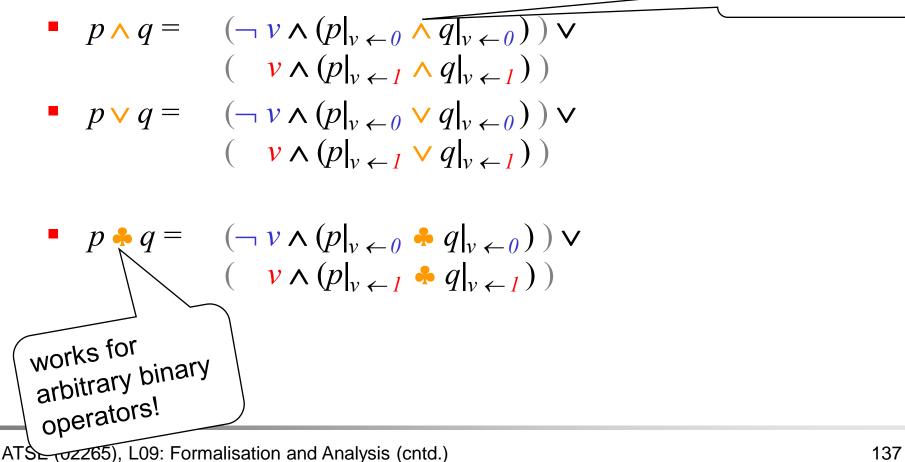
**Compexity**: O(1)

# **Boolean operators**



Recursion

The binary Boolean operations can be formulated recursively by the help of the Shannon expansion:



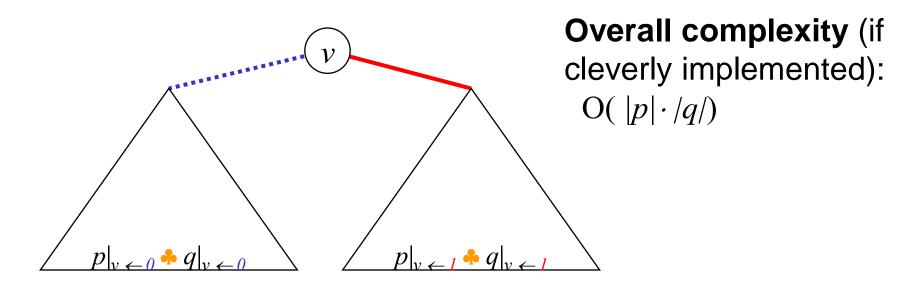
#### **Binary Boolean operations**

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



ROBDD for  $p \neq q$  from ROBDDs for p and q:

- Generate ROBDDs for  $p|_{v \leftarrow 0}$ ,  $q|_{v \leftarrow 0}$ ,  $p|_{v \leftarrow 1}$ , and  $q|_{v \leftarrow 1}$
- Construct recursively  $p|_{v \leftarrow 0} \neq q|_{v \leftarrow 0}$  and  $p|_{v \leftarrow 1} \neq q|_{v \leftarrow 1}$
- The OBDD for  $p \neq q$  is:



Reduce the OBDD systematically to an ROBDD.



- As long as all involved ROBDDs remain small, all operations on ROBDDs are efficient
- There are many libraries implementing ROBDDs and the operations on them (often with clever algorithms for optimizing the variable order). MCiE is a very simple implementation.
- In practice, all ROBDDs in the same context are maintained in a single data structure (as a "forest" of ROBDDs and hash tables for avoiding duplicate nodes). Then, equality of ROBDDs can be decided in constant time (same pointer).

- For model checking, we need Boolean formulas with quantification of Boolean variables v (QBF):
   I v. p
- $\exists v . p \text{ is just an abbreviation for } p|_{v \leftarrow 0} \lor p|_{v \leftarrow 1}$
- $\exists \underline{v} . p \text{ is an abbreviation for}$  $\exists v_1 . (\exists v_2 . (... (\exists v_n . p) ...))$
- Respectively,  $\forall v . p$  stands for  $p|_{v \leftarrow 0} \land p|_{v \leftarrow 1}$
- And  $\forall \underline{v} . p$  stands for  $\forall v_1 . (\forall v_2 . (... (\forall v_n . p) ...))$



• For a formula,  $p(\underline{u},\underline{v})$  over variables U and V and a formula  $q(\underline{v},\underline{w})$  over variables V and W, we call

## $\exists \underline{v} . p(\underline{u}, \underline{v}) \land q(\underline{v}, \underline{w})$

the **relation product** of  $p(\underline{u}, \underline{v})$  and  $q(\underline{v}, \underline{w})$ .

- The ROBDD for the relation product can be realized with the above abbreviations by the Boolean operations. That, however, is a bit inefficient.
- In practice, the relation product is implemented directly. The worst case complexity is exponential; but, it works reasonably well in many practical setting.



# Represent everything, i.e. initial condition, transition relation as well as the result, as ROBDDs:

#### Given:

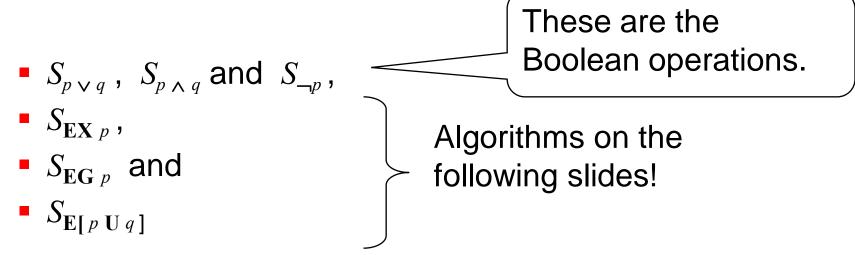
- $S_0$  and  $\mathcal{R}$  as ROBDDs over V resp.  $V \cup V'$
- a CTL-Formula *p*.

#### Wanted:

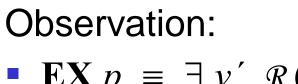
The ROBDD for the set of states S<sub>p</sub> (the set of states in which p is true).

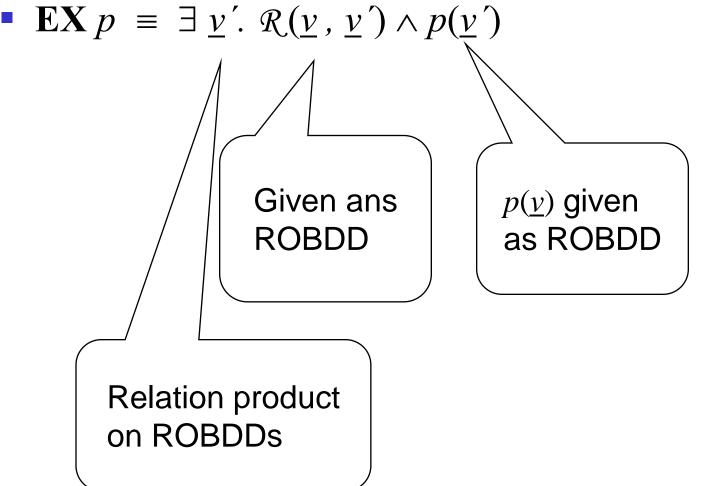
# Algorithms for CTL

- DTU
- We assume that we have calculated the ROBDDs for the sets S<sub>p</sub> and S<sub>q</sub> already
- Next we give the algorithms for calculating the ROBDDs for the sets







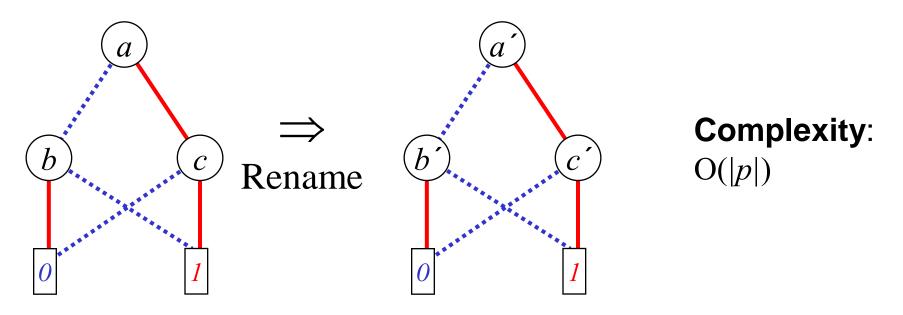


# Algorithm for EX p

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler



• The only thing left to do is to produce an ROBDD for  $p(\underline{v}')$  from an ROBDD for  $p(\underline{v})$ :

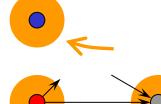


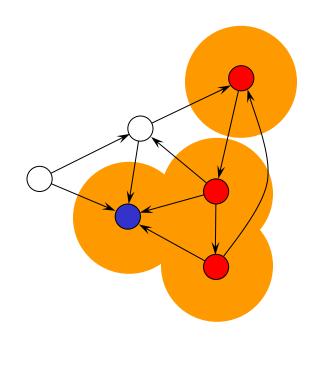
 In practice, this renaming is done on the fly (and only temporarily) when the relation product is calculated

# Reminder: E[p U q]

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler







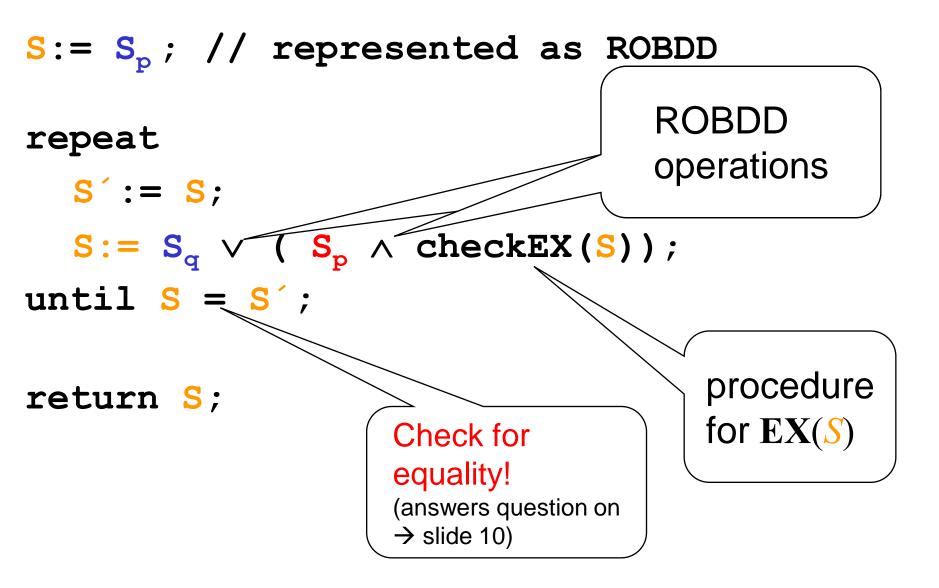
Given:  $S_p$  and  $S_q$ Wanted:  $S_{E[p \cup q]}$  $S_0 = S_a$  $S_1 = S_q \cup (S_p \cap \mathbf{EX}(S_0))$  $S_2 = S_a \cup (S_p \cap \mathbf{EX}(S_1))$  $S_{i+1} = S_a \cup (S_p \cap \mathbf{EX}(S_i))$ until  $S_{i+1} = S_i = S_{E[p \cup q]}$ 

# Algorithm for $\mathbf{E}[p \cup q]$

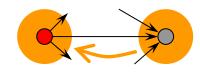
DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

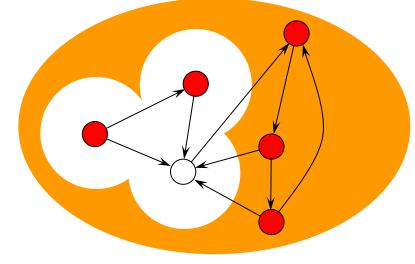
- In this algorithm, the following operations on sets (ROBDDs) occur:
  - test for equality
  - union
  - intersection
  - $\mathbf{EX}(S)$
- For all these operations, we have algorithms already (more or less efficient)
- If the iteration does not change anything (check for equality), this is the ROBDD for S<sub>E[pUq]</sub>.











Given:  $S_p$ Wanted:  $S_{EG p}$ 

This is the inefficient algorithm from the introduction.

With the help of ROBDDs it becomes reasonably efficient.

$$S_{0} = S_{p}$$

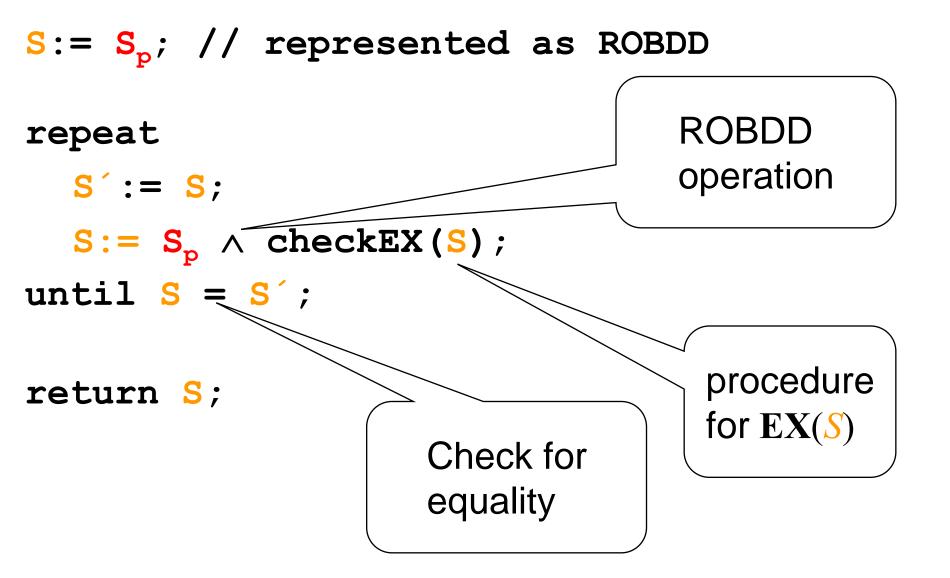
$$S_{1} = S_{p} \cap \mathbf{EX}(S_{0})$$

$$S_{2} = S_{p} \cap \mathbf{EX}(S_{1})$$

$$\dots$$

$$S_{i+1} = S_{p} \cap \mathbf{EX}(S_{i})$$
until  $S_{i+1} = S_{i} = S_{\mathbf{EG}p}$ 





## Symbolic model checking



- The use of ROBDDs for the representation of sets of states is called symbolic model checking (as in contrast to explicit model checking).
- Symbolic model checking contributed to the initial success of model checking (SMV and today NuSMV)!
- Though it uses more inefficient algorithms as one would use with explicit sets, symbolic model checking is sometimes more efficient (but that depends!).
- It does not work always (for bigger examples).
- There are many other techniques for model checking!
- To date, applying model checking for realistic systems requires much experience.