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Model checking is a
technology for

the fully automatic
verification of

reactive systems

with a finite state space.

ATSE (02265), L08: Formalisation and Analysis
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5.2. Main Concepts and Ideas
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= Kripke structures (defining the system/model)

= CTL (specifying the properties)
= algorithms (only basic idea)
= complexity

ATSE (02265), L08: Formalisation and Analysis



Systems and Requirements

system

meets

ATSE (02265), L08: Formalisation and Analysis

DTU Compute DTU
Department of Applied Mathematics and Computer Science b4
Ekkart Kindler >

requirements




=
—
=

model M specification A
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— AG(a= AF D)
a
Kripke structure Computation Tree Logic (CTL)
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Kripke Structure ot

M

A Kripke structure consists of

= a set of states,

= with distinguished initial states,
= a total transition relation and

= a labelling of states with a set of
atomic propositions. )

Total means that each state
has a transition to
somewhere!

ATSE (02265), L08: Formalisation and Analysis k 8
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The behaviour at a state can be represented as a
computation tree:

a

/Iﬂ;te that all paths are \
infinite!

Thatis a conseque_r)ce of the
totality of the transition

Qelation.
7 VN - ! _/
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EX.,EG ., E[.U.|, ..
CTL-formulas are inductively defined:

= atomic propositions are CTL-formulas

= CTL-formulas combined with a Boolean
operator are CTL-formulas

» CTL-formulas combined with temporal
operators are CTL-formulas

ATSE (02265), L08: Formalisation and Analysis 10
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Exists neXt: EXp [ T ——

M

there exists an (immediate) successor in which p holds
true:

EXp

EXDp P

ATSE (02265), L08: Formalisation and Analysis 11



Exists Globally: EG p
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there exists an infinite path on which p holds in each

state:

EG p

ATSE (02265), L08: Formalisation and Analysis
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Exists Until: E[p Ug] |57

M

there exists a reachable state in which 5 holds true,
and up to this state p holds true:

E[pUq]

E[pUq]
E[pUq]

E[pUq] E[pUq]

ATSE (02265), L08: Formalisation and Analysis 13
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Abbreviations |

M

for all iImmediate successors, p holds true
EFp= E | trueUp |

IN some reachable state, p holds true

In all reachable states, p holds true

on each path, there exists a state in which p holds
true

E)ualities J

ATSE (02265), L08: Formalisation and Analysis 14



System “meets” formula |%:7 e
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A CTL-formula holds for a Kripke structure
If the formula holds in each initial state.

ATSE (02265), L08: Formalisation and Analysis
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model M specification p

a

— AG(a= AF D)

How do we prove it?

ATSE (02265), L08: Formalisation and Analysis 16
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Algorithms Exs

M

For each sub-formula, we inductively calculate the set
of states, in which this sub-formula is true:

= atomic propositions /]
= Boolean operators  [/]

= temporal operators

ATSE (02265), L08: Formalisation and Analysis 17
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Given:

The set of states in which
p holds: S,

Wanted:

The set of states in which
EX p holds: Sgx,

We also write EX(S), ) for Sgx

ATSE (02265), L08: Formalisation and Analysis
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/"As stated here, this algorithm is quite inefficient. o
There are more efficient ways to do this. ‘

fficient algorithm turns out to be —

But, even this ine
quite efficient when used with the right data H
_J <

kstructure (ROBDDs, s€€ 5.4).

Given: S, und §
q
Wanted: Sg, y,;

S, =0
5, =8,0(S, NEX(5))
5, =8,V (S, NnEX(5))

S.,=8,0(S, NEX(5))

until S;,;=5,= Sgp v

l

ATSE (02265), L08: Formalisation and Analysis
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Given: S,
Wanted: Sg¢,
S, =8
5, =5, N EX(5)
S, =5, N EX(S))
S=8, M EX(5)
until 5., = 5= Sgq
20
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Algorithms Summary
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CTL model checking ~ marking algorithm + iteration

" EXp &>
" E[p Ug] ‘“
<>
= EGp
<>

ATSE (02265), L08: Formalisation and Analysis 21
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Complexity

M

When implemented in an efficient way, the marking
algorithm for each operator is linear in the number of
states of the system:

OCIM|-|pl)

size of the size of the
model formula

ATSE (02265), L08: Formalisation and Analysis 22
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State Space Explosion
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= The number of states of a system Is exponential
In the number of its variables

= Therefore, naive model checking algorithms are
doomed to fall in practice:
- more efficient data structures
- Improved algorithms

—> partial investigation of state space
2> ...

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 24



State Space Explosion |5
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The main issue in model checking is:

How to avoid or at least to restrict the
negative effect of the state space explosion?

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 25
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= Kripke Structures

= Syntactic Representation
= Examples

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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= Motivation

= Definition

= Computation paths
= Transition systems

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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Motivation
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There are many different notations for reactive
systems; the choice depends on the application area
and the purpose of the model.

Most model checking techniques are independent

from the particular notation. Therefore, we do not fix a
notation.

Rather we define Kripke structures as a common
underlying semantic model.

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 28



Kripke Structures | B s s s | 3

A Kripke structure M consists of S, 25,
a 83
o S1 4
= a finite set of states: S, S
= a set of initial states: Spc S,

= a total transition relation: R Sx S

= a labelling of the states with a set of
atomic propositions AP: L:S —24°

Set of all
subsets of AP.
ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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Paths and Computation Trees | %™

M

The set of all paths of M In a state s can be represented as an
Infinite tree, the computation tree of Min s :

Example:

Y 2 Y

vy
Since the transition relation R IS

total, all paths (branches) of the
tree are infinite!

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 30
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Systems and Kripke Structures | & e i

AN
s/

M

t, t,

t; A Petri net

N
N
oye

(1,0,1,0) (O )(0,1,1,0)

The corresponding
Kripke structure

R

(1,0,0,1) = Y(0,1,0,1)

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 31
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5 t 1 A Petri net
\5/ \5/
Nt
The information on (1,0,1,0) (- t 1(0,1,1,0)
related transitions is lost 2
in the Kripke structure! G s
Y tl Y
(1,0,0,1) (- ~()(0,1,0,1)
t2

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 32
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Extensions |

M

= Labelling of transitions: Transition systems

= |[nstead of a single transition relation, there are

many transition relations (in our example for every
Petri net transition).

g A
This is also important for efficiency reasons!
N _

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 33
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= Motivation & Example
= States
= |nitial states
= Transitions
= Labels
ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 34
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a=0 a=1 = Boolean variables:
N\, 4 V=1{a c}
c=0 (( %= «@
I 1 = |nitial formula:
c=1 Q( ) = Transition formula:
C a, C =
S={(0,0), (0,1), (1,0), (1,])} (@"=—anc = c)V
(a"= aANc =-c)
Sp=1 §
R=1{ (0.0)(1,0), (10),0,0)), * Implict labelling
((0,1),(1,1)), ((1,1),(0,1)) N
((0,0),(0,1)), ((0,1),(0,0)),
((1,0),(1,1)), (,1),(1,0)) }
ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 35
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As a Transition System | mm e .

a=0 a=1
g .
c=0 (% «@
ﬂ A
c=1 d& ’(j
C a, C

G\is equality is often implicit for
variables that do not occur
“primed”.

For example in MCIE (important

& for efficiency).

=
=

M

= Boolean variables:
V=1{a, c}

= |nitial formula:

= Transition formula:

T =

(@ =—a )
c’'=-c)}

Implicit labelling:

AP =V

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)



=
—]
=

More Examples

M

n this section, we show by the help of two examples
now to represent different kinds of systems as

Kripke structures represented by formulas.

= Synchronous circuit (hardware)
= Concurrent processes

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 37
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C s
¢ O {
b"=(anb v —c)
c =—c
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(b"=(anb v —c)) A
b’ (c’'==c)A
(a"=0va =1)

|

clock

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 39



Concurrent Processes

loop forever
x:= 0;
y:= 0;

=
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(pca=0Apca =1Ax"=0 ANY =YApch =pchb)v

(pca=1Apca =0Ay =0 A X =XApch ' =pcbh) v

(pcb=0Apch " =1AX"=1 Ay =yaApca =pca)v

(pcb=1Apch"=0Ay =1 A X'=XApca =pca)

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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loop forever
x:= 1;
y:= 1;
40
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request, equest,
criticaly critical,
semaphor
idle, de,

—

How do the formula
transition system?

s look for Petri nets as a

N

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 41



54 ROBDDs U ComBte

=
—
=

Reduced Ordered Binary Deci-sion \
Diagrams; for simplicity then just
called Binary Decision Diagrams
(BDDs). )

= Motivation

= Definition

= Operations on ROBDDs

= Quantified Boolean formulas (QBF)

ATSE (02265), L09: Formalisation and Analysis (cntd.) o



Motivation
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= The number of states of realistic systems is gigantic.

—Representing sets of states by enumerating every
state explicitly is a bad idea.

= Sets could be represented “symbolically”,
e.g. by formulas (see next slide)

ATSE (02265), L09: Formalisation and Analysis (cntd.) 43
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d . formulas
a<<>cC representing
sets of states
— dAC
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Formulas
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= Some operations on sets can be efficiently executed
for sets that are represented as formulas:

= union: pPv(

= disjunction: PAC

= complement:. —p

= setdifference: pA—=Q

Problem:
= the same set can have different representations

= |t Is extremely inefficient to find out whether two
formulas represent the same set (NP-complete).

= therefore, formulas are not a good representation for

. . . ry
ng for equality of sets Is a_ve
o on in model checking!

crucial operati
' 0 (78
ATSE (02265), L09: Formalisation and Anal (BTW: Why?) 2 slide 19/2 ( ) 45
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= Representation of sets such that
= set operations and
= check for equality

can be computed efficiently

- )

The answer will be Re_duced
Ordered Binary Decision
Diagrams (ROBDDs)!

k J

ATSE (02265), L09: Formalisation and Analysis (cntd.) 46
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2 .
a=b A c=d Problem: These will

big!
0 . ] Lalso be very big

J

ATSE (02265), L09: Formalisation and Analysis (cntd.) 47
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a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Delete redundant nodes

a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Delete redundant nodes |

DTU Compute DTU
Department of Applied Mathematics and Computer Science >
Ekkart Kindler >

a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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a=b A c=d
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a=b A c=d
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rNo identical sub-
trees or redundant

knodes anymore!
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"Prettified result”: ROBDD ‘““’““‘”

M

a=b A c=d ~OBDD
> = All variables on the paths occur in
the same Order (we had that from
the start)

= No identical sub-graphs anymore
= No redundant nodes anymore

— R educed Ordered
Binary Decision Diagram

ATSE (02265), L09: Formalisation and Analysis (cntd.) 57
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= For every set (and a fixed variable order) there
exists exactly one ROBDD representing it!

= For many practically relevant sets, the ROBBDs
representing them are small.

= The size of the ROBDDs depends on the chosen
variable order (on the paths):

For example, the ROBDD for the set characterized by
a=b A c=d i1s small with variable order a < b <c¢ </,
It Is bigger with variable ordera <c¢ < d <b.

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Observations
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= There are sets for which the ROBDD will be big for
any variable order (multiplication)

= Finding good or even optimal variable orders is one
of the challenges of symbolic model checking

= There Is no efficient way to find an optimal variable
order in general (results from complexity theory)

= But, there are heuristics:

= Variables that are ,somehow related” should be close to
each other

= Local optimisations by switching two variables

ATSE (02265), L09: Formalisation and Analysis (cntd.) 59
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= How do we generate an ROBDD?

= Answer: Start with full tree and reduce It!

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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= How do we generate an ROBDD?

= Answer: Start with full tree and reduce It!

\
E’his is a very bad idea!

o

Rather we byi
bottom uild them

f
With ope P Irom formujas

ratio
ROBDpg s on

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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= Boolean variable

= Negation

= Restriction and Shannon expansion
= Binary operations

= ROBDDs and Kripke structures

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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The set represented by variable a is represented by
the ROBBD:

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Restriktion in ROBDDs |77
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= For a ROBDD representing a Boolean function p, the
ROBDD for the p|, . , can be obtained as follows:

° Complexity:

O(|p|)
Restrlct
@ @ Size of the

= Subsequently: systematic reduction ROBDDs forp
of the resulting ROBDD.

Remember: \
rExvsfung ROBDDs are never

changed!
In practice, this is done a bit

Complexity:
O(lp|- )

ATSE (02265), L\_different.

oy STS (CILA. )
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Restriction: Special case |5t

M

= An important special case is the restriction to the
first variable v, of the ROBDD:

plv’ 0 DZW. plv] <! In practice, this special case 1S
exploited.

Compexity:
O(/)

plvl <« plvl « ]

ATSE (02265), L09: Formalisation and Analysis (cntd.) 66
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Boolean operators
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= The binary Boolean operations can be formulated
recursively by the help of the Shannon expansion:

( Recursion]
= prg= (ﬁVA(pveO QVeO))V )
( VA(pve] QVFI))
" pvqg= (ﬁVA(pVFO QVFO))V
( VA(pveI QVel))

" perqg= (=VvAQ@lLco®ql,p))V
( VA(plve] Q|ve1))

Shannon expansion

65), L09: Formalisation and Analysis (cntd.) 67
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Binary Boolean operations |57

M

ROBDD for p « g from ROBDDs for p and g:

= Generate ROBDDs forplv « 0 Q|v «0 ’plv « 17 and qlv «1
= Construct recursively p|

v« 0 Q|ve0andp|ve]
= The OBDD forp « g is:

Q|v « 1

Overall complexity (if
cleverly implemented):

OC(lpl-lal)

u B
a®
at®
““““
-
a®
a®

p|v(—/) q|v(—0

p|v(—] Q|v(—]

= Reduce the OBDD systematically to an ROBDD.

ATSE (02265), L09: Formalisation and Analysis (cntd.) 68
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ROBDDs: Summary ot

= As long as all involved ROBDDs remain small,
all operations on ROBDDs are efficient

= There are many libraries implementing ROBDDs and the
operations on them (often with clever algorithms for
optimizing the variable order). MCIE is a very simple
Implementation.

= |n practice, all ROBDDs in the same context are maintained
in a single data structure (as a ,forest” of ROBDDs and hash
tables for avoiding duplicate nodes). Then, equality of
ROBDDs can be decided in constant time (same pointer).

ATSE (02265), L09: Formalisation and Analysis (cntd.) 69



Quantified Boolean formulas
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= For model checking, we need Boolean formulas
with quantification of Boolean variables v (QBF):
dv.p

= Jv.plsjust an abbreviation for p|, . ,Vv p

= Jy. plis an abbreviation for
dv,.(Av,.(...(Fv,.p)...))

v« 1

= Respectively, V v. p stands for p|,. , A p|

= And V v. p stands for
Vv,.(Vv,.(...(Vv,.p)...))

v« 1

ATSE (02265), L09: Formalisation and Analysis (cntd.) 70
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Relation product

M

= For aformula, p(u,v)over variables U and V' and a formula
q(v, w) over variables V and W, we call

dv. p(uwy) Aq(y, w)

the relation product of p(u,v) and g(v, w).

= The ROBDD for the relation product can be realized with
the above abbreviations by the Boolean operations.
That, however, is a bit inefficient.

= |n practice, the relation product is implemented directly. The
worst case complexity is exponential; but, it works
reasonably well in many practical setting.

ATSE (02265), L09: Formalisation and Analysis (cntd.) 71
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5.5 Symbolic model checking %=

M

Represent everything, i.e. initial condition, transition
relation as well as the result, as ROBDDs:

Given:
= §,and ® as ROBDDs over Vresp. Vu IV’
= a CTL-Formula p.

Wanted:

= The ROBDD for the set of states S,
(the set of states in which p is true).

ATSE (02265), L09: Formalisation and Analysis (cntd.) 72
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Algorithms for CTL

M

= \We assume that we have calculated the ROBDDs for the
sets §, and S, already

= Next we give the algorithms for calculating the ROBDDs for
the sets

These are the
=S, S .,and S_, Boolean operations.

~

" Sex, Algorithms on the
" Sgc, and > following slides!
" Sklpug)

ATSE (02265), L09: Formalisation and Analysis (cntd.) 73



Algorithm for EX p

Observation:
" EXp = dy. R(v,v)Apl)

-

-

Given ans
ROBDD

.

/

~

Relation product
on ROBDDs

/

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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p(v) given
as ROBDD

~

=
—
=

M

)
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Algorithm for EX p o
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= The only thing left to do is to produce an ROBDD for p(v")
from an ROBDD for p(v):

Complexity:
O(lp))

= |n practice, this renaming is done on the fly (and only
temporarily) when the relation product is calculated

ATSE (02265), L09: Formalisation and Analysis (cntd.) 75
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Given: S, and S,
Wanted: Sg, v,

S, =8,
S, =5,0(S, NEX(5)
S, =5,0(S, NEX(S5))

5= 8, U ( 5, M EX(5))
until 5. =5="5; 4,
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Algorithm for E[ p U ¢q] |57

M

= |n this algorithm, the following operations on sets
(ROBDDs) occur:

= test for equality
= union

= Intersection

= EX(9Y)

= For all these operations, we have algorithms already
(more or less efficient)

= |f the iteration does not change anything (check for
equality), this is the ROBDD for Sg; , y .
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Procedure checkEU(S_,S,) ‘

=
—]
=

M

= S,; // represented as ROBDD
~
repeat ROBD.D
L operations
°« I 4 /
Sq V S, A checkEX (<5)) ;
until = :
N
return S: procedure
Check for | for EX(5)
equality! J
(answers question on
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Reminder EG p

‘ DTU Compute

Ekkart Kindler

Given: S,
Wanted: 5gg,
S, =S,
5 =5, N EX(5))
This is the inefficient algorithm from Sz =Sp M EX(Sl)

the introduction.

With the help of ROBDDs it becomes B
reasonably efficient. Sz‘+1 T Sp M EX(Si)

until 5. =5 =5,
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Procedure checkEX(S,) |77

=
—]
=

M

:= S,; // represented as ROBDD
~
repeat ROBDD
= 5; operation
S, A checkEX (%) ; 7
until = ;
~
return S; procedure
| for EX(O)
Check for Y
equality

\_ )

ATSE (02265), L09: Formalisation and Analysis (cntd.) 80



Symbolic model checking

‘ DTU Compute

M

= The use of ROBDDs for the representation of sets of states
IS called symbolic model checking (as in contrast to explicit
model checking).

= Symbolic model checking contributed to the initial success of
model checking (SMV and today NuSMV)!

= Though it uses more inefficient algorithms as one would use
with explicit sets, symbolic model checking is sometimes
more efficient (but that depends!).

= |t does not work always (for bigger examples).
= There are many other techniques for model checking!

= To date, applying model checking for realistic systems
requires much experience.
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M

The following slides are covering the mathematical
formalisation and some additional details:

The are not shown In the lecture, but are included
For completness sake.
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5.3. System model (details) | &= e

=
—
=

M

= Kripke Structures

= Syntactic Representation
= Example

Rather, We builg them

Vtﬁttom up from formulas
ith Operations on
ROBDpg

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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=
—
=

M

= Motivation

= Definition

= Computation paths
= Transition systems

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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Motivation

‘ DTU Compute

M

There are many different notations for reactive
systems; the choice depends on the application area
and the purpose of the model.

Most model checking techniques are independent

from the particular notation. Therefore, we do not fix a
notation.

Rather we define Kripke structures as a common
underlying semantic model.
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Kripke Structures | B s s s | 3

A Kripke structure M consists of S, 25,
a 83
o S1 4
= a finite set of states: S, S
= a set of initial states: Spc S,

= a total transition relation: R Sx S

= a labelling of the states with a set of
atomic propositions AP: L:S —24°

Set of all
subsets of AP.
ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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Kripke Structures | B wronans

=
—
=

M

We call M = (S, S, R, L) a Kripke structure over the
atomic propositions AP.

We say that

= proposition a € AP is valid in a state s € §,
If a € L(s), I.e. If a Is one of the labels of s.

= states” € SIS successor state of state s € §,
If (s, s") € R.

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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Kripke Structures ot

M

Remarks:

= For technical reasons, we require that the transition

relation R is total; I.e. for each state s € S there exists
a successor state.

= |n principle, we could avoid this restriction.
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M

Paths

For a Kripke structure M = (S, S, R, L) we call an
Infinite sequence over S

T=58)8;5,5;3...
a path of Min s, If for each ieN state Is a successor
of 5; i.e.if (s; 5;,;) € R

A path starting in an initial state of M is called a run of
M.
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Paths and Computation Trees | %™

M

The set of all paths of M In a state s can be represented as an
Infinite tree, the computation tree of Min s :

Example:

Y 2 Y

vy
Since the transition relation R IS

total, all paths (branches) of the
tree are infinite!
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Systems and Kripke Structures |5

M

= A system resp. a model of a system in another

notation can be easily mapped to a Kripke structure
(provided that the model is finite).

= Sometimes some information of the model will be
lost.

- Example on next slide
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Systems and Kripke Structures | & e i

AN
s/

M

t, t,

t; A Petri net

N
N
oye

(1,0,1,0) (O )(0,1,1,0)

The corresponding
Kripke structure

R

(1,0,0,1) = Y(0,1,0,1)

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 92



DTU Compute DTU
Systems and Kripke Structures | F5 e | 23
5 t 1 A Petri net
\5/ \5/
Nt
The information on (1,0,1,0) (- t 1(0,1,1,0)
related transitions is lost 2
in the Kripke structure! G s
Y tl Y
(1,0,0,1) (- ~()(0,1,0,1)
t2
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Extensions |

M

= Labelling of transitions: Transition systems

= |[nstead of a single transition relation, there are

many transition relations (in our example for every
Petri net transition).

g A
This is also important for efficiency reasons!
N _
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= Motivation & Example
= States
= |nitial states
= Transitions
= | abels
ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 95



‘ DTU Compute

Motivation

M

= Kripke structures are a semantic model for reactive
systems (a mathematical structure).

= For real (and large) systems, an explicit
enumeration of all states and all transitions is
tedious (> state space explosion).

= Therefore, we use a notation from logic, for
representing Kripke structures and transition
systems in a more compact way.

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

96



Example
a=0 a=1
Ny B, 5
c=0 (= )
ﬂ A
c=1 d& ’(j
C a, C
0 = false
1 = true

Department of Applied Mathematics and Computer Science

‘ DTU Compute

Ekkart Kindler

=
—
=

M

Boolean variables:

V=1{a, c}

Initial formula:

Transition formula:

Implicit labelling:
AP =7V

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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States

= LletV={v, .

‘ DTU Compute

M

., v, } be a set of Boolean variables.

= We call a mapping o: = B an assignment for

variables V.

B = {0, I } denotes the set of Booleans or truth values
(with 0 = false and I = true ).

= Each assignment can be considered as a state.

= This way, the set V implicitly defines a set of states
S={oc|oc.:V—>B}.

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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Initial States

M

= The (propositional) formulas over variables V' are
defined as usual.

= Likewise, the validity of a formula p under some
assignment o Is defined as usual,
we write o= p, If p Is valid at ©.

= A formula ¢, over V, the initial formula, defines the

set of Initial states:
So={oc|ckEJ5, }.
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=
=

M

= For a set of variables V
we define the set V'

of primed variables.

ldea:

= Assignment for J/ : source state of the transition
= Assignment for J/": target state of the transition

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 100



Transition relation s

=
—]
=

M

= An assignment for variables IV U V" can be

represented as a pair of assignments (o, ¢’) for V.
= o(v) defines the value for v

= o (v) defines the value for v’

= The validity of formula p over /' v " for a pair of
assignments (o, o) can be defined as usual : We
write (o, o’) = p, if pis valid for

(c,0)

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 101



Transition relation | B wronans

=
—
=

M

= A formula ®over IV U V', the transition formula,

defines the transition relation of a Kripke structure in
the following way:

R:{(G,G’)l (GaG,) =R}

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 102
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Labelling e

M

= The labelling of the states (assignment) can be

directly derived from the assignment:
AP =V

Lo)={velV]|ov)=1}={velV |okEVv}

l.e. each state (assignment) is labelled with those
variables that are true in this assignment

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 103
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DTU Compute T Wit bt A -—
S u m m ary ‘ \IDEK(IJ(;"[:;(:;:JI;:[!; ied Mathematics and Computer Science z
a=0 a=1 = Boolean variables:
N\, \ 4 V=1{a c}
c=0 (( & «@
I 1 = |nitial formula:
c=1 Q( ) = Transition formula:
C a, C =
S={(0,0), (0,1), (1,0), (1,])} (@"=—anc = c)V
(a"= aANc =-c)
Sy = { }

R=1{ (0.0)(1,0), (10),0,0)), * Implict labelling
(OD.(11), (@1,01), -
(0.0(0.0)), ((0.1),(0,0)).,

(LD, (1D(L0) }
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As a Transition System | mm e .

a=0 a=1
g .
c=0 (% «@
ﬂ A
c=1 d& ’(j
C a, C

G\is equality is often implicit for
variables that do not occur

primed.

For example in MCIE (important

& for efficiency).

=
=

M

= Boolean variables:
V=1{a, c}

= |nitial formula:

= Transition formula:

T =

(@ =—a )
c’'=-c)}

Implicit labelling:

AP =V

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)
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More Examples

M

n this section, we show by the help of two examples
now to represent different kinds of systems as

Kripke structures represented by formulas.

= Synchronous circuit (hardware)
= Concurrent processes

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.) 106
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i 1 i i DTUAJC(IT(]EU? Applied Mathematics and Computer Science
Combinatorial Circuit | st nt s e sioes | 2
a
& b’
b >1
c .
< o {
b"=(anb v —c)
C, — —C
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(b"=(anb v —c)) A
b’ (c’'==c)A
(a"=0va =1)

|

clock
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Concurrent Processes

loop forever
x:= 0;
y:= 0;

=
—
=

(pca=0Apca =1Ax"=0 ANY =YApch =pchb)v

(pca=1Apca =0Ay =0 A X =XApch ' =pcbh) v

(pcb=0Apch " =1AX"=1 Ay =yaApca =pca)v

(pcb=1Apch"=0Ay =1 A X'=XApca =pca)

ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

‘ Jepartment ot Applied Mather cs and Lompt z
loop forever
x:= 1;
y:= 1;
109
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request, equest,
criticaly critical,
semaphor
idle, de,

—

How do the formula
transition system?

s look for Petri nets as a

N
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5.4 ROBDDs (details) |5 e

=
—
=

= Motivation
= Definition
= Operations on ROBDDs

Reduced Ordered Binary Deci-sion \
Diagrams; for simplicity then just
called Binary Decision Diagrams
(BDDs). )
= Quantified Boolean formulas (QBF)
111
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Motivation

‘ DTU Compute

M

= The number of states of realistic systems is gigantic.

—Representing sets of states by enumerating every
state explicitly is a bad idea.

= Sets could be represented “symbolically”,
e.g. by formulas (see next slide)
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~
—/ C
Boolean
d . formulas
a<<>cC representing
sets of states
— dAC
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Formulas

‘ DTU Compute

M

= Some operations on sets can be efficiently executed
for sets that are represented as formulas:

= union: pPv(

= disjunction: PAC

= complement:. —p

= setdifference: pA—=Q

Problem:
= the same set can have different representations

= |t Is extremely inefficient to find out whether two
formulas represent the same set (NP-complete).

= therefore, formulas are not a good representation for

equality of sets is a very

Checking for |
crucial operation in model ;heckmg!
I7

: ' 9
ATSE (02265), L09: Formalisation and Anal (BTW- Why?) 2 slide 1 114
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=
—]
=

M

= Representation of sets such that
= set operations and
= check for equality

can be computed efficiently

- )

The answer will be Re_duced
Ordered Binary Decision
Diagrams (ROBDDs)!

k J
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M

2 .
a=b A c=d Problem: These will

big!
0 . ] Lalso be very big

J
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=
—
=

i

a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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ldentify same sub-trees |
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—
=

i

a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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=

i

a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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i

a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Delete redundant nodes

a=b A c=d

ATSE (02265), L09: Formalisation and Analysis (cntd.)

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e
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a=b A c=d
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a=b A c=d
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a=b A c=d
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rNo identical sub-
trees or redundant

knodes anymore!
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"Prettified result”: ROBDD ‘““’““‘”

M

a=b A c=d ~OBDD
> = All variables on the paths occur in
the same Order (we had that from
the start)

= No identical sub-graphs anymore
= No redundant nodes anymore

— R educed Ordered
Binary Decision Diagram

ATSE (02265), L09: Formalisation and Analysis (cntd.) 126
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Observations

M

= For every set (and a fixed variable order) there
exists exactly one ROBDD representing it!

= For many practically relevant sets, the ROBBDs
representing them are small.

= The size of the ROBDDs depends on the chosen
variable order (on the paths):

For example, the ROBDD for the set characterized by
a=b A c=d i1s small with variable order a < b <c¢ </,
It Is bigger with variable ordera <c¢ < d <b.

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Observations
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M

= There are sets for which the ROBDD will be big for
any variable order (multiplication)

= Finding good or even optimal variable orders is one
of the challenges of symbolic model checking

= There Is no efficient way to find an optimal variable
order in general (results from complexity theory)

= But, there are heuristics:

= Variables that are ,somehow related” should be close to
each other

= Local optimisations by switching two variables

ATSE (02265), L09: Formalisation and Analysis (cntd.) 128
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= How do we generate an ROBDD?

= Answer: Start with full tree and reduce It!

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Question | B s

=
—
=

M

= How do we generate an ROBDD?

= Answer: Start with full tree and reduce It!

\
E’his is a very bad idea!

o

Rather we byi
bottom uild them

f
With ope P Irom formujas

ratio
ROBDpg s on

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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= Boolean variable

= Negation

= Restriction and Shannon expansion
= Binary operations

= ROBDDs and Kripke structures

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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=

M

The set represented by variable a is represented by
the ROBBD:

ATSE (02265), L09: Formalisation and Analysis (cntd.) 132
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Restriction & Shannon expansion ‘ orU Compute

M

= For a set (resp. Boolean function) p over variables

v, ...,v, and a Boolean value ¢ € B, we define the

Boolean function Pl by

Pl Vi o v)) =PV, o Vi, [ Vi, e V)

" pl,, . Is called restriction of p.

= |t holds (Shannon expansion of p):

p:(_'V/\pL/FO)V(V/\plve])

ATSE (02265), L09: Formalisation and Analysis (cntd.)
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Restriktion in ROBDDs |77

M

= For a ROBDD representing a Boolean function p, the
ROBDD for the p|, . , can be obtained as follows:

° Complexity:

O(|p|)
Restrlct
@ @ Size of the

= Subsequently: systematic reduction ROBDDs forp
of the resulting ROBDD.

Remember: \
rExvsfung ROBDDs are never

changed!
In practice, this is done a bit

Complexity:
O(lp|- )

ATSE (02265), L\_different.

oy STS (CILA. )
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Restriction: Special case |5t

M

= An important special case is the restriction to the
first variable v, of the ROBDD:

plv’ 0 DZW. plv] <! In practice, this special case 1S
exploited.

Compexity:
O(/)

plvl <« plvl « ]
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Boolean operators

‘ DTU Compute

M

= The binary Boolean operations can be formulated
recursively by the help of the Shannon expansion:

( Recursion ]

A\

= prg= (ﬁVA(pveO QVeO))V
( VA(pve] QVe]))

" pvqg= (ﬁVA(pVFO QVFO))V
( VA(pveI QVel))

" perqg= (=VvAQ@lLco®ql,p))V
( VA(plve] Q|ve1))

65), LO9: Formalisation and Analysis (cntd.) 137
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Binary Boolean operations |57

M

ROBDD for p « g from ROBDDs for p and g:

= Generate ROBDDs forplv « 0 Q|v «0 ’plv « 17 and qlv «1
= Construct recursively p|

v« 0 Q|ve0andp|ve]
= The OBDD forp « g is:

Q|v « 1

Overall complexity (if
cleverly implemented):

OC(lpl-lal)

u B
a®
at®
““““
-
a®
a®

p|v(—/) q|v(—0

p|v(—] Q|v(—]

= Reduce the OBDD systematically to an ROBDD.
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ROBDDs: Summary ot

= As long as all involved ROBDDs remain small,
all operations on ROBDDs are efficient

= There are many libraries implementing ROBDDs and the
operations on them (often with clever algorithms for
optimizing the variable order). MCIE is a very simple
Implementation.

= |n practice, all ROBDDs in the same context are maintained
in a single data structure (as a ,forest” of ROBDDs and hash
tables for avoiding duplicate nodes). Then, equality of
ROBDDs can be decided in constant time (same pointer).
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Quantified Boolean formulas
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= For model checking, we need Boolean formulas
with quantification of Boolean variables v (QBF):
dv.p

= Jv.plsjust an abbreviation for p|, . ,Vv p

= Jy. plis an abbreviation for
dv,.(Av,.(...(Fv,.p)...))

v« 1

= Respectively, V v. p stands for p|,. , A p|

= And V v. p stands for
Vv,.(Vv,.(...(Vv,.p)...))

v« 1

ATSE (02265), L09: Formalisation and Analysis (cntd.) 140



DTU Compute

Relation product

M

= For aformula, p(u,v)over variables U and V' and a formula
q(v, w) over variables V and W, we call

dv. p(uwy) Aq(y, w)

the relation product of p(u,v) and g(v, w).

= The ROBDD for the relation product can be realized with
the above abbreviations by the Boolean operations.
That, however, is a bit inefficient.

= |n practice, the relation product is implemented directly. The
worst case complexity is exponential; but, it works
reasonably well in many practical setting.
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5.5 Symbolic model checking %=

M

Represent everything, i.e. initial condition, transition
relation as well as the result, as ROBDDs:

Given:
= §,and ® as ROBDDs over Vresp. Vu IV’
= a CTL-Formula p.

Wanted:

= The ROBDD for the set of states S,
(the set of states in which p is true).
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Algorithms for CTL

M

= \We assume that we have calculated the ROBDDs for the
sets §, and S, already

= Next we give the algorithms for calculating the ROBDDs for
the sets

These are the
=S, S .,and S_, Boolean operations.

~

" Sex, Algorithms on the
" Sgc, and > following slides!
" Sklpug)
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Algorithm for EX p

Observation:
" EXp = dy. R(v,v)Apl)

-

-

Given ans
ROBDD

.

/

~

Relation product
on ROBDDs

/
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.

‘ DTU Compute

p(v) given
as ROBDD

~

=
—
=

M

)
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Algorithm for EX p o

=
—]
=

M

= The only thing left to do is to produce an ROBDD for p(v")
from an ROBDD for p(v):

Complexity:
O(lp))

= |n practice, this renaming is done on the fly (and only
temporarily) when the relation product is calculated
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Reminder: E[p U ¢g ]

=
e

T

Department of Applied Mathematics and Computer Science
Ekkart Kindler

i

‘ DTU Compute

ATSE (02265), L09: Formalisation and Analysis (cntd.)

o
&P

Given: S, and S,
Wanted: Sg, v,

S, =8,
S, =5,0(S, NEX(5)
S, =5,0(S, NEX(S5))

5= 8, U ( 5, M EX(5))
until 5. =5="5; 4,
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Algorithm for E[ p U ¢q] |57

M

= |n this algorithm, the following operations on sets
(ROBDDs) occur:

= test for equality
= union

= Intersection

= EX(9Y)

= For all these operations, we have algorithms already
(more or less efficient)

= |f the iteration does not change anything (check for
equality), this is the ROBDD for Sg; , y .
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Procedure checkEU(S_,S,) ‘

=
—]
=

M

= S,; // represented as ROBDD
~
repeat ROBD.D
L operations
°« I 4 /
Sq V S, A checkEX (<5)) ;
until = :
N
return S: procedure
Check for | for EX(5)
equality! J
(answers question on
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Department of Applied Mathematics and Computer Science >
>

Reminder EG p

‘ DTU Compute

Ekkart Kindler

Given: S,
Wanted: 5gg,
S, =S,
5 =5, N EX(5))
This is the inefficient algorithm from Sz =Sp M EX(Sl)

the introduction.

With the help of ROBDDs it becomes B
reasonably efficient. Sz‘+1 T Sp M EX(Si)

until 5. =5 =5,
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Procedure checkEX(S,) |77

=
—]
=

M

:= S,; // represented as ROBDD
~
repeat ROBDD
= 5; operation
S, A checkEX (%) ; 7
until = ;
~
return S; procedure
| for EX(O)
Check for Y
equality

\_ )
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Symbolic model checking

‘ DTU Compute

M

= The use of ROBDDs for the representation of sets of states
IS called symbolic model checking (as in contrast to explicit
model checking).

= Symbolic model checking contributed to the initial success of
model checking (SMV and today NuSMV)!

= Though it uses more inefficient algorithms as one would use
with explicit sets, symbolic model checking is sometimes
more efficient (but that depends!).

= |t does not work always (for bigger examples).
= There are many other techniques for model checking!

= To date, applying model checking for realistic systems
requires much experience.
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