
Advanced Topics in

Software Engineering (02265)

Ekkart Kindler

Ekkart Kindler

2 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

V. Formalisation and Analysis

Ekkart Kindler

3 ATSE (02265), L08: Formalisation and Analysis

Model Checking

 Model checking is a

technology for

the fully automatic

verification of

reactive systems

with a finite state space.

Ekkart Kindler

4 ATSE (02265), L08: Formalisation and Analysis

Validation

system

S F Kl
 
eH Jjd
j 

requirements

validation

(formal)

specification

a

a

b

a b

model

verification

formali-

sation
validation abstraction

refinement /

implementation

Ekkart Kindler

5 ATSE (02265), L08: Formalisation and Analysis

5.2. Main Concepts and Ideas

 Kripke structures (defining the system/model)

 CTL (specifying the properties)

 algorithms (only basic idea)

 complexity

Ekkart Kindler

6 ATSE (02265), L08: Formalisation and Analysis

Systems and Requirements

system

S F Kl
 
eH Jjd
j 

requirements

meets

Ekkart Kindler

7 ATSE (02265), L08: Formalisation and Analysis

Model und Specification

model M

Kripke structure

specification A

AG (a  AF b)

Computation Tree Logic (CTL)

a

a

b

a b

Ekkart Kindler

8 ATSE (02265), L08: Formalisation and Analysis

Kripke Structure

A Kripke structure consists of

 a set of states,

 with distinguished initial states,

 a total transition relation

 a labelling of states with a set of

atomic propositions.

and

a

a

b

a b

Ekkart Kindler

9 ATSE (02265), L08: Formalisation and Analysis

Behaviour

The behaviour at a state can be represented as a

computation tree:

a

a

b

a b

Ekkart Kindler

10 ATSE (02265), L08: Formalisation and Analysis

CTL-Formulas

CTL-formulas are inductively defined:

 atomic propositions are CTL-formulas

a, b, ...

 CTL-formulas combined with a Boolean

operator are CTL-formulas

 CTL-formulas combined with temporal

operators are CTL-formulas

.  . , .  . ,  . , ...

EX . , EG . , E[. U .], ...

Ekkart Kindler

11 ATSE (02265), L08: Formalisation and Analysis

Exists neXt: EX p

there exists an (immediate) successor in which p holds

true:

EX p

EX p

EX p EX p

p p

p

p

Ekkart Kindler

12 ATSE (02265), L08: Formalisation and Analysis

Exists Globally: EG p

there exists an infinite path on which p holds in each

state:

EG p

EG p

EG p

EG p

EG p

Ekkart Kindler

13 ATSE (02265), L08: Formalisation and Analysis

Exists Until: E[p U q]

there exists a reachable state in which b holds true,

and up to this state p holds true:

E[p U q]

E[p U q]

E[p U q]

E[p U q] E[p U q]

Ekkart Kindler

14 ATSE (02265), L08: Formalisation and Analysis

Abbreviations

AX p   EX  p

for all immediate successors, p holds true

EF p  E [true U p]

in some reachable state, p holds true

AG p   EF  p

in all reachable states, p holds true

AF p   EG  p

on each path, there exists a state in which p holds

true

Ekkart Kindler

15 ATSE (02265), L08: Formalisation and Analysis

System “meets” formula

A CTL-formula holds for a Kripke structure

if the formula holds in each initial state.

Ekkart Kindler

16 ATSE (02265), L08: Formalisation and Analysis

Example

model M specification p

AG (a  AF b)
a

a

b

a b

How do we prove it?

Ekkart Kindler

17 ATSE (02265), L08: Formalisation and Analysis

Algorithms

For each sub-formula, we inductively calculate the set

of states, in which this sub-formula is true:

 atomic propositions

 temporal operators

 Boolean operators

Ekkart Kindler

18 ATSE (02265), L08: Formalisation and Analysis

„Algorithm“ for EX p

Given:

The set of states in which

p holds: Sp

Wanted:

The set of states in which
EX p holds: SEX p

We also write EX(Sp) for SEX p

Ekkart Kindler

19 ATSE (02265), L08: Formalisation and Analysis

until Si+1 = Si = SE[p U q] until Si+1 = Si

Algorithm for E[p U q]

Given: Sp und Sq

Wanted: SE[p U q]

S0 = 

S1 = Sq  (Sp  EX(S0))

S2 = Sq  (Sp  EX(S1))

Si+1 = Sq  (Sp  EX(Si))

...

Ekkart Kindler

20 ATSE (02265), L08: Formalisation and Analysis

until Si+1 = Si = SEG p until Si+1 = Si

Algorithm for EG p

Given: Sp

Wanted: SEG p

S0 = S

S1 = Sp  EX(S0)

S2 = Sp  EX(S1)

Si+1 = Sp  EX(Si)

...

Ekkart Kindler

21 ATSE (02265), L08: Formalisation and Analysis

Algorithms Summary

CTL model checking ~ marking algorithm + iteration

 EX p

 E[p U q]

 EG p

Ekkart Kindler

22 ATSE (02265), L08: Formalisation and Analysis

Complexity

When implemented in an efficient way, the marking

algorithm for each operator is linear in the number of

states of the system:

 O(| M |  | p |)

size of the

model

size of the

formula

Ekkart Kindler

23 ATSE (02265), L08: Formalisation and Analysis

Complexity

When implemented in an efficient way, the marking

algorithm for each operator is linear in the number of

states of the system:

 O(| M |  | p |)

Ekkart Kindler

24 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

State Space Explosion

 The number of states of a system is exponential

in the number of its variables

 Therefore, naive model checking algorithms are

doomed to fail in practice:

 more efficient data structures

 improved algorithms

 partial investigation of state space

 …

Ekkart Kindler

25 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

State Space Explosion

The main issue in model checking is:

How to avoid or at least to restrict the

negative effect of the state space explosion?

Ekkart Kindler

26 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

5.3. System model

 Kripke Structures

 Syntactic Representation

 Examples

Ekkart Kindler

27 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Kripke Structures

 Motivation

 Definition

 Computation paths

 Transition systems

Ekkart Kindler

28 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Motivation

There are many different notations for reactive

systems; the choice depends on the application area

and the purpose of the model.

Most model checking techniques are independent

from the particular notation. Therefore, we do not fix a

notation.

Rather we define Kripke structures as a common

underlying semantic model.

Ekkart Kindler

29 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Kripke Structures

A Kripke structure M consists of

 a finite set of states: S,

 a set of initial states: S0  S,

 a total transition relation: R  S S

 a labelling of the states with a set of

atomic propositions AP: L: S  2AP

a

a

b

a b

s1

s2

s3

s4

s5

s6

Ekkart Kindler

30 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Paths and Computation Trees

The set of all paths of M in a state s can be represented as an

infinite tree, the computation tree of M in s :

Example:

a

a

b

a b

s1

s2

s3

s4

s5

s6

s3 s4

s5

s6

s4

s3 s6

s5

s3 s6

s4 s3 s4

Since the transition relation R is

total, all paths (branches) of the

tree are infinite!

Ekkart Kindler

31 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Systems and Kripke Structures

t2

a

b

t1

c

d

t4 t3

(1,0,1,0)

(1,0,0,1)

(0,1,1,0)

(0,1,0,1)

A Petri net

The corresponding

Kripke structure

d

a

b

c

Ekkart Kindler

32 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Systems and Kripke Structures

t2

a

b

t1

c

d

t4 t3

t1

t1

t2

t2

t3 t3 t4 t4

(1,0,1,0)

(1,0,0,1)

(0,1,1,0)

(0,1,0,1)

A Petri net

The information on

related transitions is lost

in the Kripke structure!

Ekkart Kindler

33 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Extensions

 Labelling of transitions: Transition systems

 Instead of a single transition relation, there are

many transition relations (in our example for every

Petri net transition).

Ekkart Kindler

34 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Syntactic Representation

 Motivation & Example

 States

 Initial states

 Transitions

 Labels

Ekkart Kindler

35 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Formula representation

 Boolean variables:
V = { a, c }

 Initial formula:
S0   c

 Transition formula:
R 
(a´ =  a  c´ = c) 
(a´ = a  c´ =  c)

 Implicit labelling:
AP = V

a=0 a=1

c=0

c=1

S = { (0,0), (0,1), (1,0), (1,1) }

S0 = { (0,0) , (1,0) }

R = { ((0,0),(1,0)) , ((1,0),(0,0)) ,

 ((0,1),(1,1)) , ((1,1),(0,1)) ,

 ((0,0),(0,1)) , ((0,1),(0,0)) ,

 ((1,0),(1,1)) , ((1,1),(1,0)) }

a, c

a

c

Ekkart Kindler

36 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

As a Transition System

 Boolean variables:
V = { a, c }

 Initial formula:
S0   c

 Transition formula:
T 
{ (a´ =  a  c´ = c) ,
 (a´ = a  c´ =  c) }

 Implicit labelling:
AP = V

a=0 a=1

c=0

c=1
a, c

a

c

Ekkart Kindler

37 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

More Examples

 In this section, we show by the help of two examples

how to represent different kinds of systems as

Kripke structures represented by formulas.

 Synchronous circuit (hardware)

 Concurrent processes

 Petri nets

Ekkart Kindler

38 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

Combinatorial Circuit

&
1

a

b

c

b´

c´

Ekkart Kindler

39 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

Sequential Synchronous Circuit

&
1

a

b

c

b´

c´

clock

b´

c´

Ekkart Kindler

40 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

(pca = 0  pca´ = 1  x´ = 0  y´ = y  pc2´ = pc2) 

(pca = 1  pca´ = 0  y´ = 0  x´ = x  pc2´ = pc2) 

(pcb = 0  pcb´ = 1  x´ = 1  y´ = y  pc1´ = pc1) 

(pcb = 1  pcb´ = 0  y´ = 1  x´ = x  pc1´ = pc1)

(pca = 0  pca´ = 1  x´ = 0  y´ = y  pcb´ = pcb) 

(pca = 1  pca´ = 0  y´ = 0  x´ = x  pcb´ = pcb) 

(pcb = 0  pcb´ = 1  x´ = 1  y´ = y  pca´ = pca) 

(pcb = 1  pcb´ = 0  y´ = 1  x´ = x  pca´ = pca)

(pca = 0  pca´ = 1  x´ = 0  y´ = y  pcb´ = pcb) 

(pca = 1  pca´ = 0  y´ = 0  x´ = x  pcb´ = pcb) 

(pcb = 0  pcb´ = 1  x´ = 1  y´ = y  pca´ = pca) 

(pcb = 1  pcb´ = 0  y´ = 1  x´ = x  pca´ = pca)

Concurrent Processes

loop forever

 x:= 0;

 y:= 0;

loop forever

 x:= 1;

 y:= 1;

pca = 0

pca = 1

pcb = 0

pcb = 1

Ekkart Kindler

41 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Petri nets

semaphor

request1

critical1

idle1

request2

critical2

idle2

Ekkart Kindler

42 ATSE (02265), L09: Formalisation and Analysis (cntd.)

5.4 ROBDDs

 Motivation

 Definition

 Operations on ROBDDs

 Quantified Boolean formulas (QBF)

Ekkart Kindler

43 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Motivation

 The number of states of realistic systems is gigantic.

Representing sets of states by enumerating every

state explicitly is a bad idea.

 Sets could be represented “symbolically”,

e.g. by formulas (see next slide)

Ekkart Kindler

44 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Sets as formulas

 c

a

a  c

 a  c

a=0 a=1

c=0

c=1

Boolean

formulas

representing

sets of states

Ekkart Kindler

45 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Formulas

 Some operations on sets can be efficiently executed
for sets that are represented as formulas:
 union: p  q

 disjunction: p  q

 complement:  p

 set difference: p   q

Problem:

 the same set can have different representations

 it is extremely inefficient to find out whether two
formulas represent the same set (NP-complete).

 therefore, formulas are not a good representation for
sets of states.

Ekkart Kindler

46 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Goal

 Representation of sets such that

 set operations and

 check for equality

 can be computed efficiently

Ekkart Kindler

47 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Binary Decision Trees

0 0 1 1 0 0

0 1

a

b

c

b

c c c

d d d d d d d d

0 0 0 0 0 0 0 0 1 1

a=b  c=d

0

0

0

1

1

1

Ekkart Kindler

48 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

0 0 1 1 0 0

a

b

c

b

c c c

d d d d d d d d

0 0 0 0 0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

49 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

0 0 1 1 0 0

a

b

c

b

c c

d d d d d d

0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

50 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

0 0

a

b b

c c

d d d d

0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

51 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

a

b b

c c

d d d

0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

52 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Delete redundant nodes

a

b b

c c

d d d

0 0 0 1 1

a=b  c=d

Ekkart Kindler

53 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Delete redundant nodes

a

b b

c c

d d d

0 0 0 1 1

a=b  c=d

Ekkart Kindler

54 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

a

b b

c

d d

0 0 0 1 1

a=b  c=d

Ekkart Kindler

55 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

a

b b

c

d d

0 0 0 1

a=b  c=d

Ekkart Kindler

56 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Result

a

b b

c

d d

0 1

a=b  c=d

Ekkart Kindler

57 ATSE (02265), L09: Formalisation and Analysis (cntd.)

”Prettified result”: ROBDD

a

b b

c

d d

0 1

a=b  c=d
ROBDD

 All variables on the paths occur in

the same Order (we had that from

the start)

 No identical sub-graphs anymore

 No redundant nodes anymore

 R educed Ordered

 Binary Decision Diagram

Ekkart Kindler

58 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Observations

 For every set (and a fixed variable order) there

exists exactly one ROBDD representing it!

 For many practically relevant sets, the ROBBDs

representing them are small.

 The size of the ROBDDs depends on the chosen

variable order (on the paths):

 For example, the ROBDD for the set characterized by

a=b  c=d is small with variable order a < b < c < d;

it is bigger with variable order a < c < d < b.

Ekkart Kindler

59 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Observations

 There are sets for which the ROBDD will be big for
any variable order (multiplication)

 Finding good or even optimal variable orders is one
of the challenges of symbolic model checking

 There is no efficient way to find an optimal variable
order in general (results from complexity theory)

 But, there are heuristics:
 Variables that are „somehow related“ should be close to

each other

 Local optimisations by switching two variables

Ekkart Kindler

60 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Question

 How do we generate an ROBDD?

 Answer: Start with full tree and reduce it!

Ekkart Kindler

61 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Question

 How do we generate an ROBDD?

 Answer: Start with full tree and reduce it!

Ekkart Kindler

62 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Operationen in ROBBDs

 Boolean variable

 Negation

 Restriction and Shannon expansion

 Binary operations

 ROBDDs and Kripke structures

Ekkart Kindler

63 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Boolean variable

The set represented by variable a is represented by

the ROBBD:

0 1

a

Ekkart Kindler

64 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Negation

a

b b

c

d d

0 1

a

b b

c

d d

1 0


negation

Ekkart Kindler

65 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Restriktion in ROBDDs

 For a ROBDD representing a Boolean function p, the
ROBDD for the p|v  t can be obtained as follows:

 Subsequently: systematic reduction
of the resulting ROBDD.

d

a
c

v 
Restrict

e

t t

a
c

d e

Complexity:

O(|p|)

Complexity:

O(|p|log (|p|))

Ekkart Kindler

66 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Restriction: Special case

 An important special case is the restriction to the

first variable v1 of the ROBDD:

p|v1  0 bzw. p|v1  1

v1

Compexity:

O(1)

p|v1  0 p|v1  1

Ekkart Kindler

67 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Boolean operators

 The binary Boolean operations can be formulated

recursively by the help of the Shannon expansion:

 p  q = ( v  (p|v  0  q|v  0)) 

 (v  (p|v  1  q|v  1))

 p  q = ( v  (p|v  0  q|v  0)) 

 (v  (p|v  1  q|v  1))

 p  q = ( v  (p|v  0  q|v  0)) 

 (v  (p|v  1  q|v  1))

Recursion

Ekkart Kindler

68 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Binary Boolean operations

ROBDD for p  q from ROBDDs for p and q:

 Generate ROBDDs for p|v  0 , q|v  0 , p|v  1 , and q|v  1

 Construct recursively p|v  0  q|v  0 and p|v  1  q|v  1

 The OBDD for p  q is:

 Reduce the OBDD systematically to an ROBDD.

v

p|v  0  q|v  0 p|v  1  q|v  1

Overall complexity (if

cleverly implemented):

 O(|p| |q|)

Ekkart Kindler

69 ATSE (02265), L09: Formalisation and Analysis (cntd.)

ROBDDs: Summary

 As long as all involved ROBDDs remain small,

all operations on ROBDDs are efficient

 There are many libraries implementing ROBDDs and the

operations on them (often with clever algorithms for

optimizing the variable order). MCiE is a very simple

implementation.

 In practice, all ROBDDs in the same context are maintained

in a single data structure (as a „forest“ of ROBDDs and hash

tables for avoiding duplicate nodes). Then, equality of

ROBDDs can be decided in constant time (same pointer).

Ekkart Kindler

70 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Quantified Boolean formulas

 For model checking, we need Boolean formulas

with quantification of Boolean variables v (QBF):

 v . p

  v . p is just an abbreviation for p|v  0  p|v  1

  v . p is an abbreviation for

 v1 . ( v2 . (... ( vn . p) …))

 Respectively,  v . p stands for p|v  0  p|v  1

 And  v . p stands for

  v1 . ( v2 . (... ( vn . p) …))

Ekkart Kindler

71 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Relation product

 For a formula, p(u,v) over variables U and V and a formula
q(v, w) over variables V and W , we call

  v . p(u,v)  q(v, w)

the relation product of p(u,v) and q(v, w).

 The ROBDD for the relation product can be realized with
the above abbreviations by the Boolean operations.
That, however, is a bit inefficient.

 In practice, the relation product is implemented directly. The
worst case complexity is exponential; but, it works
reasonably well in many practical setting.

Ekkart Kindler

72 ATSE (02265), L09: Formalisation and Analysis (cntd.)

5.5 Symbolic model checking

Represent everything, i.e. initial condition, transition

relation as well as the result, as ROBDDs:

Given:

 S0 and R as ROBDDs over V resp. V  V´

 a CTL-Formula p.

Wanted:

 The ROBDD for the set of states Sp

(the set of states in which p is true).

Ekkart Kindler

73 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Algorithms for CTL

 We assume that we have calculated the ROBDDs for the

sets Sp and Sq already

 Next we give the algorithms for calculating the ROBDDs for

the sets

 Sp  q , Sp  q and Sp ,

 SEX p ,

 SEG p and

 SE[p U q]

These are the

Boolean operations.

Algorithms on the

following slides!

Ekkart Kindler

74 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Algorithm for EX p

Observation:

 EX p   v´. R (v , v´)  p(v´)

Given ans

ROBDD

p(v) given

as ROBDD

Relation product

on ROBDDs

Ekkart Kindler

75 ATSE (02265), L09: Formalisation and Analysis (cntd.)

 The only thing left to do is to produce an ROBDD for p(v´)
from an ROBDD for p(v):

 In practice, this renaming is done on the fly (and only
temporarily) when the relation product is calculated

Algorithm for EX p

a

b c

0 1

a´

b´ c´

0 1


Rename

Complexity:

O(|p|)

Ekkart Kindler

76 ATSE (02265), L09: Formalisation and Analysis (cntd.)

until Si +1 = Si = SE[p U q]

Reminder: E[p U q]

Given: Sp and Sq

Wanted: SE[p U q]

S0 = Sq

S1 = Sq  (Sp  EX(S0))

S2 = Sq  (Sp  EX(S1))

Si + 1 = Sq  (Sp  EX(Si))

...

Ekkart Kindler

77 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Algorithm for E[p U q]

 In this algorithm, the following operations on sets

(ROBDDs) occur:

 test for equality

 union

 intersection

 EX(S)

 For all these operations, we have algorithms already

(more or less efficient)

 If the iteration does not change anything (check for

equality), this is the ROBDD for SE[p U q].

Ekkart Kindler

78 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Procedure checkEU(Sp,Sq)

S:= Sp ; // represented as ROBDD

repeat

 S´:= S;

 S:= Sq  (Sp  checkEX(S));

until S = S´;

return S; procedure

for EX(S)

ROBDD

operations

Check for

equality!
(answers question on

 slide 45)

Ekkart Kindler

79 ATSE (02265), L09: Formalisation and Analysis (cntd.)

until Si +1 = Si = SEG p

Reminder EG p

Given: Sp

Wanted: SEG p

S0 = Sp

S1 = Sp  EX(S0)

S2 = Sp  EX(S1)

Si +1 = Sp  EX(Si)

...

This is the inefficient algorithm from

the introduction.

With the help of ROBDDs it becomes

reasonably efficient.

Ekkart Kindler

80 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Procedure checkEX(Sp)

S:= Sp; // represented as ROBDD

repeat

 S´:= S;

 S:= Sp  checkEX(S);

until S = S´;

return S; procedure

for EX(S)

ROBDD

operation

Check for

equality

Ekkart Kindler

81 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Symbolic model checking

 The use of ROBDDs for the representation of sets of states
is called symbolic model checking (as in contrast to explicit
model checking).

 Symbolic model checking contributed to the initial success of
model checking (SMV and today NuSMV)!

 Though it uses more inefficient algorithms as one would use
with explicit sets, symbolic model checking is sometimes
more efficient (but that depends!).

 It does not work always (for bigger examples).

 There are many other techniques for model checking!

 To date, applying model checking for realistic systems
requires much experience.

Ekkart Kindler

The following slides are covering the mathematical

formalisation and some additional details;

The are not shown in the lecture, but are included

For completness sake.

82 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Ekkart Kindler

83 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

5.3. System model (details)

 Kripke Structures

 Syntactic Representation

 Examples

Ekkart Kindler

84 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Kripke Structures

 Motivation

 Definition

 Computation paths

 Transition systems

Ekkart Kindler

85 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Motivation

There are many different notations for reactive

systems; the choice depends on the application area

and the purpose of the model.

Most model checking techniques are independent

from the particular notation. Therefore, we do not fix a

notation.

Rather we define Kripke structures as a common

underlying semantic model.

Ekkart Kindler

86 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Kripke Structures

A Kripke structure M consists of

 a finite set of states: S,

 a set of initial states: S0  S,

 a total transition relation: R  S S

 a labelling of the states with a set of

atomic propositions AP: L: S  2AP

a

a

b

a b

s1

s2

s3

s4

s5

s6

Ekkart Kindler

87 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Kripke Structures

We call M = (S, S0, R, L) a Kripke structure over the

atomic propositions AP.

We say that

 proposition a  AP is valid in a state s  S,

if a  L(s), i.e. if a is one of the labels of s.

 state s´  S is successor state of state s  S,

if (s, s´)  R.

Ekkart Kindler

88 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Kripke Structures

Remarks:

 For technical reasons, we require that the transition
relation R is total; i.e. for each state s  S there exists
a successor state.

 In principle, we could avoid this restriction.

Ekkart Kindler

89 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Paths

For a Kripke structure M = (S, S0, R, L) we call an

infinite sequence over S

 = s0 s1 s2 s3 ...

a path of M in s0, if for each iN state is a successor

of si; i.e. if (si ,si+1)  R

A path starting in an initial state of M is called a run of

M.

Ekkart Kindler

90 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Paths and Computation Trees

The set of all paths of M in a state s can be represented as an

infinite tree, the computation tree of M in s :

Example:

a

a

b

a b

s1

s2

s3

s4

s5

s6

s3 s4

s5

s6

s4

s3 s6

s5

s3 s6

s4 s3 s4

Since the transition relation R is

total, all paths (branches) of the

tree are infinite!

Ekkart Kindler

91 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Systems and Kripke Structures

 A system resp. a model of a system in another

notation can be easily mapped to a Kripke structure

(provided that the model is finite).

 Sometimes some information of the model will be

lost.

 Example on next slide

Ekkart Kindler

92 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Systems and Kripke Structures

t2

a

b

t1

c

d

t4 t3

(1,0,1,0)

(1,0,0,1)

(0,1,1,0)

(0,1,0,1)

A Petri net

The corresponding

Kripke structure

d

a

b

c

Ekkart Kindler

93 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Systems and Kripke Structures

t2

a

b

t1

c

d

t4 t3

t1

t1

t2

t2

t3 t3 t4 t4

(1,0,1,0)

(1,0,0,1)

(0,1,1,0)

(0,1,0,1)

A Petri net

The information on

related transitions is lost

in the Kripke structure!

Ekkart Kindler

94 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Extensions

 Labelling of transitions: Transition systems

 Instead of a single transition relation, there are

many transition relations (in our example for every

Petri net transition).

Ekkart Kindler

95 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Syntactic Representation

 Motivation & Example

 States

 Initial states

 Transitions

 Labels

Ekkart Kindler

96 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Motivation

 Kripke structures are a semantic model for reactive

systems (a mathematical structure).

 For real (and large) systems, an explicit

enumeration of all states and all transitions is

tedious ( state space explosion).

 Therefore, we use a notation from logic, for

representing Kripke structures and transition

systems in a more compact way.

Ekkart Kindler

97 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Example

 Boolean variables:
V = { a, c }

 Initial formula:
S0   c

 Transition formula:
R 
(a´ =  a  c´ = c) 
(a´ = a  c´ =  c)

 Implicit labelling:
AP = V

a=0 a=1

c=0

c=1

0 = false

1 = true

a, c

a

c

Ekkart Kindler

98 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

States

 Let V = { v1, …, vn } be a set of Boolean variables.

 We call a mapping : V B an assignment for

variables V.

 B = { 0, 1 } denotes the set of Booleans or truth values

(with 0 = false and 1 = true).

 Each assignment can be considered as a state.

 This way, the set V implicitly defines a set of states

S = {  |  : V B }.

Ekkart Kindler

99 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Initial States

 The (propositional) formulas over variables V are

defined as usual.

 Likewise, the validity of a formula p under some

assignment  is defined as usual;

we write ╞═ p, if p is valid at .

 A formula S0 over V, the initial formula, defines the

set of initial states:
S0 = {  | ╞═ S0 }.

Ekkart Kindler

100 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Transition relation

 For a set of variables V = { v1 , … , vn },

we define the set V´ = { v´1, … , v´n }

of primed variables.

Idea:

 Assignment for V : source state of the transition

 Assignment for V´ : target state of the transition

Ekkart Kindler

101 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Transition relation

 An assignment for variables V  V´ can be

represented as a pair of assignments (, ´) for V :

 (v) defines the value for v

 ´(v) defines the value for v´

 The validity of formula p over V  V´ for a pair of

assignments (, ´) can be defined as usual : We

write (, ´) ╞═ p, if p is valid for

(, ´)

Ekkart Kindler

102 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Transition relation

 A formula R over V  V´, the transition formula,
defines the transition relation of a Kripke structure in
the following way:

 R = { (, ´) | (, ´) ╞═ R }

Ekkart Kindler

103 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Labelling

 The labelling of the states (assignment) can be

directly derived from the assignment:

AP = V

L() = { v  V | (v) = 1 } = { v  V |  ╞═ v }

 i.e. each state (assignment) is labelled with those

variables that are true in this assignment

Ekkart Kindler

104 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Summary

 Boolean variables:
V = { a, c }

 Initial formula:
S0   c

 Transition formula:
R 
(a´ =  a  c´ = c) 
(a´ = a  c´ =  c)

 Implicit labelling:
AP = V

a=0 a=1

c=0

c=1

S = { (0,0), (0,1), (1,0), (1,1) }

S0 = { (0,0) , (1,0) }

R = { ((0,0),(1,0)) , ((1,0),(0,0)) ,

 ((0,1),(1,1)) , ((1,1),(0,1)) ,

 ((0,0),(0,1)) , ((0,1),(0,0)) ,

 ((1,0),(1,1)) , ((1,1),(1,0)) }

a, c

a

c

Ekkart Kindler

105 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

As a Transition System

 Boolean variables:
V = { a, c }

 Initial formula:
S0   c

 Transition formula:
T 
{ (a´ =  a  c´ = c) ,
 (a´ = a  c´ =  c) }

 Implicit labelling:
AP = V

a=0 a=1

c=0

c=1
a, c

a

c

Ekkart Kindler

106 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

More Examples

 In this section, we show by the help of two examples

how to represent different kinds of systems as

Kripke structures represented by formulas.

 Synchronous circuit (hardware)

 Concurrent processes

 Petri nets

Ekkart Kindler

107 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

Combinatorial Circuit

&
1

a

b

c

b´

c´

Ekkart Kindler

108 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

(b´ = (a  b   c)) 

(c´ =  c) 

(a´ = 0  a´ = 1)

Sequential Synchronous Circuit

&
1

a

b

c

b´

c´

clock

b´

c´

Ekkart Kindler

109 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

(pca = 0  pca´ = 1  x´ = 0  y´ = y  pc2´ = pc2) 

(pca = 1  pca´ = 0  y´ = 0  x´ = x  pc2´ = pc2) 

(pcb = 0  pcb´ = 1  x´ = 1  y´ = y  pc1´ = pc1) 

(pcb = 1  pcb´ = 0  y´ = 1  x´ = x  pc1´ = pc1)

(pca = 0  pca´ = 1  x´ = 0  y´ = y  pcb´ = pcb) 

(pca = 1  pca´ = 0  y´ = 0  x´ = x  pcb´ = pcb) 

(pcb = 0  pcb´ = 1  x´ = 1  y´ = y  pca´ = pca) 

(pcb = 1  pcb´ = 0  y´ = 1  x´ = x  pca´ = pca)

(pca = 0  pca´ = 1  x´ = 0  y´ = y  pcb´ = pcb) 

(pca = 1  pca´ = 0  y´ = 0  x´ = x  pcb´ = pcb) 

(pcb = 0  pcb´ = 1  x´ = 1  y´ = y  pca´ = pca) 

(pcb = 1  pcb´ = 0  y´ = 1  x´ = x  pca´ = pca)

Concurrent Processes

loop forever

 x:= 0;

 y:= 0;

loop forever

 x:= 1;

 y:= 1;

pca = 0

pca = 1

pcb = 0

pcb = 1

Ekkart Kindler

110 ATSE (02265), L09: Model Checking (Formalisation and Analysis cntd.)

Petri nets

semaphor

request1

critical1

idle1

request2

critical2

idle2

Ekkart Kindler

111 ATSE (02265), L09: Formalisation and Analysis (cntd.)

5.4 ROBDDs (details)

 Motivation

 Definition

 Operations on ROBDDs

 Quantified Boolean formulas (QBF)

Ekkart Kindler

112 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Motivation

 The number of states of realistic systems is gigantic.

Representing sets of states by enumerating every

state explicitly is a bad idea.

 Sets could be represented “symbolically”,

e.g. by formulas (see next slide)

Ekkart Kindler

113 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Sets as formulas

 c

a

a  c

 a  c

a=0 a=1

c=0

c=1

Boolean

formulas

representing

sets of states

Ekkart Kindler

114 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Formulas

 Some operations on sets can be efficiently executed
for sets that are represented as formulas:
 union: p  q

 disjunction: p  q

 complement:  p

 set difference: p   q

Problem:

 the same set can have different representations

 it is extremely inefficient to find out whether two
formulas represent the same set (NP-complete).

 therefore, formulas are not a good representation for
sets of states.

Ekkart Kindler

115 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Goal

 Representation of sets such that

 set operations and

 check for equality

 can be computed efficiently

Ekkart Kindler

116 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Binary Decision Trees

0 0 1 1 0 0

0 1

a

b

c

b

c c c

d d d d d d d d

0 0 0 0 0 0 0 0 1 1

a=b  c=d

0

0

0

1

1

1

Ekkart Kindler

117 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

0 0 1 1 0 0

a

b

c

b

c c c

d d d d d d d d

0 0 0 0 0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

118 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

0 0 1 1 0 0

a

b

c

b

c c

d d d d d d

0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

119 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

0 0

a

b b

c c

d d d d

0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

120 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

a

b b

c c

d d d

0 0 0 0 1 1

a=b  c=d

Ekkart Kindler

121 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Delete redundant nodes

a

b b

c c

d d d

0 0 0 1 1

a=b  c=d

Ekkart Kindler

122 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Delete redundant nodes

a

b b

c c

d d d

0 0 0 1 1

a=b  c=d

Ekkart Kindler

123 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

a

b b

c

d d

0 0 0 1 1

a=b  c=d

Ekkart Kindler

124 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Identify same sub-trees

a

b b

c

d d

0 0 0 1

a=b  c=d

Ekkart Kindler

125 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Result

a

b b

c

d d

0 1

a=b  c=d

Ekkart Kindler

126 ATSE (02265), L09: Formalisation and Analysis (cntd.)

”Prettified result”: ROBDD

a

b b

c

d d

0 1

a=b  c=d
ROBDD

 All variables on the paths occur in

the same Order (we had that from

the start)

 No identical sub-graphs anymore

 No redundant nodes anymore

 R educed Ordered

 Binary Decision Diagram

Ekkart Kindler

127 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Observations

 For every set (and a fixed variable order) there

exists exactly one ROBDD representing it!

 For many practically relevant sets, the ROBBDs

representing them are small.

 The size of the ROBDDs depends on the chosen

variable order (on the paths):

 For example, the ROBDD for the set characterized by

a=b  c=d is small with variable order a < b < c < d;

it is bigger with variable order a < c < d < b.

Ekkart Kindler

128 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Observations

 There are sets for which the ROBDD will be big for
any variable order (multiplication)

 Finding good or even optimal variable orders is one
of the challenges of symbolic model checking

 There is no efficient way to find an optimal variable
order in general (results from complexity theory)

 But, there are heuristics:
 Variables that are „somehow related“ should be close to

each other

 Local optimisations by switching two variables

Ekkart Kindler

129 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Question

 How do we generate an ROBDD?

 Answer: Start with full tree and reduce it!

Ekkart Kindler

130 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Question

 How do we generate an ROBDD?

 Answer: Start with full tree and reduce it!

Ekkart Kindler

131 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Operationen in ROBBDs

 Boolean variable

 Negation

 Restriction and Shannon expansion

 Binary operations

 ROBDDs and Kripke structures

Ekkart Kindler

132 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Boolean variable

The set represented by variable a is represented by

the ROBBD:

0 1

a

Ekkart Kindler

133 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Negation

a

b b

c

d d

0 1

a

b b

c

d d

1 0


negation

Ekkart Kindler

134 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Restriction & Shannon expansion

 For a set (resp. Boolean function) p over variables

v1, … ,vn and a Boolean value t  B, we define the

Boolean function p|vi  t by

 p|vi  t(v1, … ,vn) = p(v1 , … vi-1 , t ,vi+1 , … , vn)

 p|vi  t is called restriction of p.

 It holds (Shannon expansion of p):

 p = ( v  p|v  0)  (v  p|v  1)

Ekkart Kindler

135 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Restriktion in ROBDDs

 For a ROBDD representing a Boolean function p, the
ROBDD for the p|v  t can be obtained as follows:

 Subsequently: systematic reduction
of the resulting ROBDD.

d

a
c

v 
Restrict

e

t t

a
c

d e

Complexity:

O(|p|)

Complexity:

O(|p|log (|p|))

Ekkart Kindler

136 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Restriction: Special case

 An important special case is the restriction to the

first variable v1 of the ROBDD:

p|v1  0 bzw. p|v1  1

v1

Compexity:

O(1)

p|v1  0 p|v1  1

Ekkart Kindler

137 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Boolean operators

 The binary Boolean operations can be formulated

recursively by the help of the Shannon expansion:

 p  q = ( v  (p|v  0  q|v  0)) 

 (v  (p|v  1  q|v  1))

 p  q = ( v  (p|v  0  q|v  0)) 

 (v  (p|v  1  q|v  1))

 p  q = ( v  (p|v  0  q|v  0)) 

 (v  (p|v  1  q|v  1))

Recursion

Ekkart Kindler

138 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Binary Boolean operations

ROBDD for p  q from ROBDDs for p and q:

 Generate ROBDDs for p|v  0 , q|v  0 , p|v  1 , and q|v  1

 Construct recursively p|v  0  q|v  0 and p|v  1  q|v  1

 The OBDD for p  q is:

 Reduce the OBDD systematically to an ROBDD.

v

p|v  0  q|v  0 p|v  1  q|v  1

Overall complexity (if

cleverly implemented):

 O(|p| |q|)

Ekkart Kindler

139 ATSE (02265), L09: Formalisation and Analysis (cntd.)

ROBDDs: Summary

 As long as all involved ROBDDs remain small,

all operations on ROBDDs are efficient

 There are many libraries implementing ROBDDs and the

operations on them (often with clever algorithms for

optimizing the variable order). MCiE is a very simple

implementation.

 In practice, all ROBDDs in the same context are maintained

in a single data structure (as a „forest“ of ROBDDs and hash

tables for avoiding duplicate nodes). Then, equality of

ROBDDs can be decided in constant time (same pointer).

Ekkart Kindler

140 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Quantified Boolean formulas

 For model checking, we need Boolean formulas

with quantification of Boolean variables v (QBF):

 v . p

  v . p is just an abbreviation for p|v  0  p|v  1

  v . p is an abbreviation for

 v1 . ( v2 . (... ( vn . p) …))

 Respectively,  v . p stands for p|v  0  p|v  1

 And  v . p stands for

  v1 . ( v2 . (... ( vn . p) …))

Ekkart Kindler

141 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Relation product

 For a formula, p(u,v) over variables U and V and a formula
q(v, w) over variables V and W , we call

  v . p(u,v)  q(v, w)

the relation product of p(u,v) and q(v, w).

 The ROBDD for the relation product can be realized with
the above abbreviations by the Boolean operations.
That, however, is a bit inefficient.

 In practice, the relation product is implemented directly. The
worst case complexity is exponential; but, it works
reasonably well in many practical setting.

Ekkart Kindler

142 ATSE (02265), L09: Formalisation and Analysis (cntd.)

5.5 Symbolic model checking

Represent everything, i.e. initial condition, transition

relation as well as the result, as ROBDDs:

Given:

 S0 and R as ROBDDs over V resp. V  V´

 a CTL-Formula p.

Wanted:

 The ROBDD for the set of states Sp

(the set of states in which p is true).

Ekkart Kindler

143 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Algorithms for CTL

 We assume that we have calculated the ROBDDs for the

sets Sp and Sq already

 Next we give the algorithms for calculating the ROBDDs for

the sets

 Sp  q , Sp  q and Sp ,

 SEX p ,

 SEG p and

 SE[p U q]

These are the

Boolean operations.

Algorithms on the

following slides!

Ekkart Kindler

144 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Algorithm for EX p

Observation:

 EX p   v´. R (v , v´)  p(v´)

Given ans

ROBDD

p(v) given

as ROBDD

Relation product

on ROBDDs

Ekkart Kindler

145 ATSE (02265), L09: Formalisation and Analysis (cntd.)

 The only thing left to do is to produce an ROBDD for p(v´)
from an ROBDD for p(v):

 In practice, this renaming is done on the fly (and only
temporarily) when the relation product is calculated

Algorithm for EX p

a

b c

0 1

a´

b´ c´

0 1


Rename

Complexity:

O(|p|)

Ekkart Kindler

146 ATSE (02265), L09: Formalisation and Analysis (cntd.)

until Si +1 = Si = SE[p U q]

Reminder: E[p U q]

Given: Sp and Sq

Wanted: SE[p U q]

S0 = Sq

S1 = Sq  (Sp  EX(S0))

S2 = Sq  (Sp  EX(S1))

Si + 1 = Sq  (Sp  EX(Si))

...

Ekkart Kindler

147 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Algorithm for E[p U q]

 In this algorithm, the following operations on sets

(ROBDDs) occur:

 test for equality

 union

 intersection

 EX(S)

 For all these operations, we have algorithms already

(more or less efficient)

 If the iteration does not change anything (check for

equality), this is the ROBDD for SE[p U q].

Ekkart Kindler

148 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Procedure checkEU(Sp,Sq)

S:= Sp ; // represented as ROBDD

repeat

 S´:= S;

 S:= Sq  (Sp  checkEX(S));

until S = S´;

return S; procedure

for EX(S)

ROBDD

operations

Check for

equality!
(answers question on

 slide 10)

Ekkart Kindler

149 ATSE (02265), L09: Formalisation and Analysis (cntd.)

until Si +1 = Si = SEG p

Reminder EG p

Given: Sp

Wanted: SEG p

S0 = Sp

S1 = Sp  EX(S0)

S2 = Sp  EX(S1)

Si +1 = Sp  EX(Si)

...

This is the inefficient algorithm from

the introduction.

With the help of ROBDDs it becomes

reasonably efficient.

Ekkart Kindler

150 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Procedure checkEX(Sp)

S:= Sp; // represented as ROBDD

repeat

 S´:= S;

 S:= Sp  checkEX(S);

until S = S´;

return S; procedure

for EX(S)

ROBDD

operation

Check for

equality

Ekkart Kindler

151 ATSE (02265), L09: Formalisation and Analysis (cntd.)

Symbolic model checking

 The use of ROBDDs for the representation of sets of states
is called symbolic model checking (as in contrast to explicit
model checking).

 Symbolic model checking contributed to the initial success of
model checking (SMV and today NuSMV)!

 Though it uses more inefficient algorithms as one would use
with explicit sets, symbolic model checking is sometimes
more efficient (but that depends!).

 It does not work always (for bigger examples).

 There are many other techniques for model checking!

 To date, applying model checking for realistic systems
requires much experience.

