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V. Formalisation and Analysis 
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Model Checking 

 Model checking is a 

technology for 

the fully automatic 

verification of 

reactive systems 

with a finite state space. 
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Validation 
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(formal) 
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model 

verification 
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sation 
validation abstraction 

refinement / 

implementation 
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5.2. Main Concepts and Ideas 

 Kripke structures  (defining the system/model) 

 CTL  (specifying the properties) 

 algorithms  (only basic idea) 

 complexity 
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Systems and Requirements 

  

system 

S F Kl 
  
eH Jjd 
j  

requirements 

meets  
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Model und Specification 

  

model  M 

Kripke structure 

specification A  

AG ( a  AF b )  

Computation Tree Logic (CTL) 

a 

a 

b 

a b 
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Kripke Structure 

A Kripke structure consists of 

 

 a set of  states, 

 with distinguished initial states, 

 a total transition relation 

 a labelling of states with a set of 

atomic propositions. 

and 

a 

a 

b 

a b 
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Behaviour 

The behaviour at a state can be represented as a 

computation tree: 

a 

a 

b 

a b 
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CTL-Formulas 

 

 

CTL-formulas are inductively defined: 

 atomic propositions are CTL-formulas 

a, b, ... 

 CTL-formulas combined with a Boolean 

operator are CTL-formulas 

 CTL-formulas combined with temporal 

operators are CTL-formulas 

.  . , .  . ,  . , ... 

EX . , EG . , E[ . U . ], ...  
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Exists neXt:  EX p  

there exists an (immediate) successor in which p holds 

true: 

EX p 

EX p 

EX p EX p 

p p 

p 

p 
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Exists Globally:  EG p 

there exists an infinite path on which p holds in each 

state:  

 
EG p 

EG p 

EG p 

EG p 

EG p 
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Exists Until:  E[ p  U q ] 

there exists a reachable state in which b holds true, 

and up to this state p holds true: 

E[ p U q ] 

E[ p U q ] 

E[ p U q ] 

E[ p U q ] E[p U q ] 
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Abbreviations 

AX p    EX  p  

for all immediate successors, p holds true 

EF p   E [ true U p ]  

in some reachable state, p holds true 

AG p    EF  p  

in all reachable states, p holds true 

AF p    EG  p  

on each path, there exists a state in which p holds 

true 
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System “meets” formula 

A CTL-formula holds for a Kripke structure 

if the formula holds in each initial state.  



Ekkart Kindler 

16 ATSE (02265), L08: Formalisation and Analysis 

Example 

  

model  M specification p  

AG ( a  AF b )  
a 

a 

b 

a b 

  

How do we prove it? 
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Algorithms 

For each sub-formula, we inductively calculate the  set 

of states, in which this sub-formula is true: 

 

 atomic propositions 

 temporal operators 

 Boolean operators 
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„Algorithm“ for  EX p  

Given: 

The set of states in which 

p holds: Sp 

Wanted: 

The set of states in which 
EX p holds: SEX p 

We also write EX(Sp ) for SEX p 
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until Si+1 = Si = SE[ p U q ] until Si+1 = Si 

  

Algorithm for E[ p  U q ] 

Given: Sp  und Sq 

Wanted:  SE[ p  U q ] 

S0   =  

S1   = Sq  ( Sp   EX(S0)) 

S2   = Sq  ( Sp   EX(S1)) 

Si+1 = Sq  ( Sp   EX(Si)) 

... 



Ekkart Kindler 

20 ATSE (02265), L08: Formalisation and Analysis 

until Si+1 = Si = SEG p until Si+1 = Si 

  

Algorithm for EG p  

Given: Sp 

Wanted: SEG p  

S0   = S 

S1   = Sp    EX(S0) 

S2   = Sp    EX(S1) 

Si+1 = Sp    EX(Si)  

... 
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Algorithms Summary 

CTL model checking ~ marking algorithm + iteration 

 

 EX p  

 

  
 

 E[ p  U q ]  

 

 

 EG p  



Ekkart Kindler 

22 ATSE (02265), L08: Formalisation and Analysis 

Complexity 

When implemented in an efficient way, the marking 

algorithm for each operator is linear in the number of 

states of the system:  

 

                       O( | M |  | p | ) 

 

size of the 

model 

size of the 

formula 
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Complexity 

When implemented in an efficient way, the marking 

algorithm for each operator is linear in the number of 

states of the system:  

 

                       O( | M |  | p | ) 
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State Space Explosion 

 The number of states of a system is exponential 

in the number of its variables 

 

 Therefore, naive model checking algorithms are 

doomed to fail in practice: 

 more efficient data structures 

 improved algorithms 

 partial investigation of state space 

 … 
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State Space Explosion 

The main issue in model checking is: 

 

How to avoid or at least to restrict the 

negative effect of the state space explosion? 
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5.3. System model 

 Kripke Structures 

 Syntactic Representation 

 Examples 
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Kripke Structures 

 Motivation 

 Definition 

 Computation paths 

 Transition systems 
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Motivation 

There are many different notations for reactive 

systems; the choice depends on the application area 

and the purpose of the model. 

 

Most model checking techniques are independent 

from the particular notation. Therefore, we do not fix a 

notation. 

 

Rather we define Kripke structures as a common 

underlying semantic model. 
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Kripke Structures 

A Kripke structure M consists of 

 

 a finite set of states:           S, 

 a set of initial states:         S0  S, 

 a total transition relation: R  S S  

 a labelling of the states with a set of 

atomic propositions AP:  L: S  2AP  

a 

a 

b 

a b 

  

s1 

s2 

s3 

s4 

s5 

s6 
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Paths and Computation Trees 

The set of all paths of M in a state s can be represented as an 

infinite tree, the computation tree of M in s : 

 

Example: 

a 

a 

b 

a b 

  

s1 

s2 

s3 

s4 

s5 

s6 

s3 s4 

s5 

s6 

s4 

s3 s6 

s5 

s3 s6 

s4 s3 s4 

Since the transition relation R is 

total, all paths (branches) of the 

tree are infinite! 
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Systems and Kripke Structures 

t2 

a 

b 

t1 

c 

d 

t4 t3 

(1,0,1,0) 

(1,0,0,1) 

(0,1,1,0) 

(0,1,0,1) 

A Petri net 

The corresponding 

Kripke structure 

d 

a 

b 

c 
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Systems and Kripke Structures 

t2 

a 

b 

t1 

c 

d 

t4 t3 

t1 

t1 

t2 

t2 

t3 t3 t4 t4 

(1,0,1,0) 

(1,0,0,1) 

(0,1,1,0) 

(0,1,0,1) 

A Petri net 

The information on 

related transitions is lost 

in the Kripke structure!  
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Extensions 

 Labelling of transitions: Transition systems 

 

 Instead of a single transition relation, there are 

many transition relations (in our example for every 

Petri net transition). 
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Syntactic Representation 

 Motivation & Example 

 States 

 Initial states 

 Transitions 

 Labels 
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Formula representation 

 Boolean variables: 
V = { a, c } 
 

 Initial formula: 
S0    c 
 

 Transition formula: 
R   
(a´ =  a    c´ =     c )   
(a´ =     a    c´ =  c ) 
 

 Implicit labelling: 
AP = V  

a=0 a=1 

c=0 

c=1 

S = { (0,0), (0,1), (1,0), (1,1) } 

S0 = { (0,0) , (1,0) } 

R = { ((0,0),(1,0)) , ((1,0),(0,0)) , 

 ((0,1),(1,1)) , ((1,1),(0,1)) , 

 ((0,0),(0,1)) , ((0,1),(0,0)) , 

 ((1,0),(1,1)) , ((1,1),(1,0))  } 

a, c 

a 

c 
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As a Transition System 

 Boolean variables: 
V = { a, c } 
 

 Initial formula: 
S0    c 
 

 Transition formula: 
T   
{ (a´ =  a    c´ =     c ) , 
   (a´ =     a    c´ =  c ) } 

 Implicit labelling: 
AP = V  

a=0 a=1 

c=0 

c=1 
a, c 

a 

c 
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More Examples 

 In this section, we show by the help of two examples 

how to represent different kinds of systems as 

Kripke structures represented by formulas. 

 

 Synchronous circuit (hardware) 

 Concurrent processes 

 Petri nets 



Ekkart Kindler 

38 ATSE  (02265), L09: Model Checking (Formalisation and Analysis cntd.) 

( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

Combinatorial Circuit 

  

& 
1 

a 

b 

c 

b´ 

c´ 
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( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

Sequential Synchronous Circuit 

  

& 
1 

a 

b 

c 

b´ 

c´ 

clock 

b´ 

c´ 
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( pca = 0  pca´ = 1  x´ = 0    y´ = y  pc2´ = pc2 )  

( pca = 1  pca´ = 0  y´ = 0    x´ = x  pc2´ = pc2 )  

( pcb = 0  pcb´ = 1  x´ = 1    y´ = y  pc1´ = pc1 )  

( pcb = 1  pcb´ = 0  y´ = 1    x´ = x  pc1´ = pc1 ) 

( pca = 0  pca´ = 1  x´ = 0    y´ = y  pcb´ = pcb )  

( pca = 1  pca´ = 0  y´ = 0    x´ = x  pcb´ = pcb )  

( pcb = 0  pcb´ = 1  x´ = 1    y´ = y  pca´ = pca )  

( pcb = 1  pcb´ = 0  y´ = 1    x´ = x  pca´ = pca ) 

( pca = 0  pca´ = 1  x´ = 0    y´ = y  pcb´ = pcb )  

( pca = 1  pca´ = 0  y´ = 0    x´ = x  pcb´ = pcb )  

( pcb = 0  pcb´ = 1  x´ = 1    y´ = y  pca´ = pca )  

( pcb = 1  pcb´ = 0  y´ = 1    x´ = x  pca´ = pca ) 

Concurrent Processes 

  

loop forever 

  x:= 0; 

  y:= 0; 

loop forever 

  x:= 1; 

  y:= 1; 

pca = 0 

pca = 1 

pcb = 0 

pcb = 1 
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Petri nets 

  

semaphor 

request1 

critical1 

idle1 

request2 

critical2 

idle2 
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5.4 ROBDDs 

 Motivation 

 Definition 

 Operations on ROBDDs 

 Quantified Boolean formulas (QBF) 
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Motivation 

 The number of states of realistic systems is gigantic. 

 

Representing sets of states by enumerating every 

state explicitly is a bad idea.  

 

 

 Sets could be represented “symbolically”, 

e.g. by formulas (see next slide) 
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Sets as formulas 

 c 

a 

a  c 

 a  c 

a=0 a=1 

c=0 

c=1 

Boolean 

formulas 

representing 

sets of states 
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Formulas 

 Some operations on sets can be efficiently executed 
for sets that are represented as formulas: 
 union:  p  q 

 disjunction: p  q 

 complement:   p 

 set difference:  p   q 

 

Problem: 

 the same set can have different representations 

 it is extremely inefficient to find out whether two 
formulas represent the same set (NP-complete). 

 therefore, formulas are not a good representation for 
sets of states. 
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Goal 

 Representation of sets such that 

 set operations       and 

 check for equality 

 can be computed efficiently 
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Binary Decision Trees 

  

0 0 1 1 0 0 

0 1 

a 

b 

c 

b 

c c c 

d d d d d d d d 

0 0 0 0 0 0 0 0 1 1 

a=b    c=d 

0 

0 

0 

1 

1 

1 
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Identify same sub-trees 

  

0 0 1 1 0 0 

a 

b 

c 

b 

c c c 

d d d d d d d d 

0 0 0 0 0 0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  

0 0 1 1 0 0 

a 

b 

c 

b 

c c 

d d d d d d 

0 0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  

0 0 

a 

b b 

c c 

d d d d 

0 0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  
a 

b b 

c c 

d d d 

0 0 0 0 1 1 

a=b    c=d 
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Delete redundant nodes 

  
a 

b b 

c c 

d d d 

0 0 0 1 1 

a=b    c=d 
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Delete redundant nodes 

  
a 

b b 

c c 

d d d 

0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  
a 

b b 

c 

d d 

0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  
a 

b b 

c 

d d 

0 0 0 1 

a=b    c=d 
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Result 

  
a 

b b 

c 

d d 

0 1 

a=b    c=d 
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”Prettified result”: ROBDD 

  

a 

b b 

c 

d d 

0 1 

a=b    c=d 
ROBDD 

 All variables on the paths occur in 

the same Order (we had that from 

the start) 

 No identical sub-graphs anymore 

 No redundant nodes anymore 

 R educed Ordered 

   Binary Decision Diagram 
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Observations 

 For every set (and a fixed variable order) there 

exists exactly one ROBDD representing it! 

 

 For many practically relevant sets, the ROBBDs 

representing them are small. 

 

 The size of the ROBDDs depends on the chosen 

variable order (on the paths):  

 For example, the ROBDD for the set characterized by 

a=b    c=d  is small with variable order a < b < c < d; 

it is bigger with variable order a < c <  d < b. 
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Observations 

 There are sets for which the ROBDD will be big for 
any variable order (multiplication) 

 

 Finding good or even optimal variable orders is one 
of the challenges of symbolic model checking 

 

 There is no efficient way to find an optimal variable 
order in general (results from complexity theory) 

 But, there are heuristics: 
 Variables that are „somehow related“ should be close to 

each other  

 Local optimisations by switching two variables 
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Question 

 How do we generate an ROBDD? 

 

 

 Answer: Start with full tree and reduce it! 
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Question 

 How do we generate an ROBDD? 

 

 

 Answer: Start with full tree and reduce it! 
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Operationen in ROBBDs 

 Boolean variable 

 Negation 

 Restriction and Shannon expansion 

 Binary operations 

 ROBDDs and Kripke structures 
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Boolean variable 

The set represented by variable a is represented by 

the ROBBD: 

 

 

0 1 

a 
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Negation 

a 

b b 

c 

d d 

0 1 

a 

b b 

c 

d d 

1 0 

 
negation 
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Restriktion in ROBDDs 

 For a ROBDD representing a Boolean function p, the 
ROBDD for the p|v  t  can be obtained as follows: 

 

 
 

 

 

 

 

 Subsequently: systematic reduction 
of the resulting ROBDD. 

d 

a 
c 

v  
Restrict 

e 

t t 

a 
c 

d e 

Complexity: 

O(|p|) 

Complexity: 

O(|p|log (|p|)) 
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Restriction: Special case 

 An important special case is the restriction to the 

first variable v1 of the ROBDD: 

 

p|v1  0 bzw. p|v1  1 

 

 

 

 

 

 

v1 

Compexity: 

O(1) 

p|v1  0 p|v1  1 
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Boolean operators 

 The binary Boolean operations can be formulated  

recursively by the help of the Shannon expansion:  

 

 p  q =  ( v  (p|v  0   q|v  0 ) )  

 (    v  (p|v  1   q|v  1 ) ) 

 p  q =  ( v  (p|v  0   q|v  0 ) )  

 (    v  (p|v  1   q|v  1 ) ) 

 

 p  q =  ( v  (p|v  0   q|v  0 ) )  

 (    v  (p|v  1   q|v  1 ) ) 

 

 

Recursion 
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Binary Boolean operations 

ROBDD for p  q from ROBDDs for p and q: 

 Generate ROBDDs for p|v  0 , q|v  0  , p|v  1 , and q|v  1  

 Construct recursively p|v  0  q|v  0 and p|v  1  q|v  1  

 The OBDD for p  q is: 

 

 

 

 

 

 

 

 

 Reduce the OBDD systematically to an ROBDD.  

v 

p|v  0  q|v  0 p|v  1  q|v  1 

Overall complexity (if 

cleverly implemented): 

  O( |p| |q|) 
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ROBDDs: Summary 

 As long as all involved ROBDDs remain small, 

all operations on ROBDDs are efficient 

 

 There are many libraries implementing ROBDDs and the 

operations on them (often with clever algorithms for 

optimizing the variable order). MCiE is a very simple 

implementation. 

 

 In practice, all ROBDDs in the same context are maintained 

in a single data structure (as a „forest“ of ROBDDs and hash 

tables for avoiding duplicate nodes). Then, equality of 

ROBDDs can be decided in constant time (same pointer).  
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Quantified Boolean formulas 

 For model checking, we need Boolean formulas 

with quantification of Boolean variables v (QBF): 

 v . p 

  v . p is just an abbreviation for p|v  0  p|v  1 

  v . p is an abbreviation for 

 v1 . (  v2 . ( ... (  vn . p ) …) )  

 

 Respectively,  v . p  stands for p|v  0   p|v  1 

 And  v . p stands for 

  v1 . ( v2 . ( ... (  vn . p ) …) ) 
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Relation product 

 For a formula,  p(u,v) over variables U and V and a formula 
q(v, w) over variables V and W , we call 
 

     v . p(u,v)   q(v, w) 
 
the relation product of p(u,v) and q(v, w). 

 

 The ROBDD for the relation product can be realized with 
the above abbreviations by the Boolean operations. 
That, however, is a bit inefficient.  

 

 In practice, the relation product is implemented directly. The 
worst case complexity is exponential; but, it works 
reasonably well in many practical setting. 
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5.5 Symbolic model checking 

Represent everything, i.e. initial condition, transition 

relation as well as the result, as ROBDDs: 

 
Given: 

 S0 and R  as ROBDDs over V resp. V  V´ 

 a CTL-Formula p. 

 

Wanted: 

 The ROBDD for the set of states Sp 

(the set of states in which p is true). 
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Algorithms for CTL 

 We assume that we have calculated the ROBDDs for the 

sets Sp and Sq already 

 

 Next we give the algorithms for calculating the ROBDDs for 

the sets 

 

 Sp  q ,  Sp  q and  Sp , 

 SEX p , 

 SEG p   and 

 SE[ p U q ] 

  

These are the 

Boolean operations. 

Algorithms on the 

following slides! 
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Algorithm for EX p 

Observation: 

 EX p     v´. R (v , v´)  p(v´) 

Given ans 

ROBDD 

p(v) given 

as ROBDD 

Relation product 

on ROBDDs 



Ekkart Kindler 

75 ATSE (02265), L09: Formalisation and Analysis (cntd.) 

 The only thing left to do is to produce an ROBDD for p(v´) 
from an ROBDD for p(v): 
 

 

 

 

 

 

 

 

 

 In practice, this renaming is done on the fly (and only 
temporarily) when the relation product is calculated 

Algorithm for EX p 

a 

b c 

0 1 

a´ 

b´ c´ 

0 1 

 
Rename 

Complexity: 

O(|p|) 
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until Si +1 = Si = SE[ p U q ] 

  

Reminder: E[ p U q ] 

Given: Sp  and Sq 

Wanted:  SE[ p U q ]  

S0   = Sq 

S1   = Sq  ( Sp   EX(S0)) 

S2   = Sq  ( Sp   EX(S1)) 

Si + 1 = Sq  ( Sp   EX(Si)) 

... 
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Algorithm for E[ p U q] 

 In this algorithm, the following operations on sets 

(ROBDDs) occur: 

 test for equality 

 union 

 intersection 

 EX(S) 

 For all these operations, we have algorithms already 

(more or less efficient) 

 If the iteration does not change anything (check for 

equality), this is the ROBDD for SE[ p U q]. 
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Procedure checkEU(Sp,Sq) 

S:= Sp ; // represented as ROBDD 

 

repeat 

 S´:= S; 

 S:= Sq  ( Sp  checkEX(S)); 

until S = S´;  

 

return S;  procedure 

for EX(S) 

  
ROBDD 

operations 

Check for 

equality! 
(answers question on 

 slide 45) 
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until Si +1 = Si = SEG p 

  

Reminder EG p  

Given: Sp 

Wanted:  SEG p  

S0   = Sp  

S1   = Sp    EX(S0 ) 

S2   = Sp    EX(S1) 

Si +1 = Sp    EX(Si ) 

... 

This is the inefficient algorithm from 

the introduction. 

With the help of ROBDDs it becomes 

reasonably efficient.  
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Procedure checkEX(Sp) 

S:= Sp; // represented as ROBDD 

 

repeat 

 S´:= S; 

 S:= Sp  checkEX(S); 

until S = S´;  

 

return S;  procedure 

for EX(S) 

ROBDD 

operation 

Check for 

equality 
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Symbolic model checking 

 The use of ROBDDs for the  representation of sets of states 
is called symbolic model checking (as in contrast to explicit 
model checking). 

 Symbolic model checking contributed to the initial success of 
model checking (SMV and today NuSMV)! 

 

 Though it uses more inefficient algorithms as one would use 
with explicit sets, symbolic model checking is sometimes 
more efficient (but that depends!). 

 

 It does not work always (for bigger examples). 

 There are many other techniques for model checking! 

 To date, applying model checking for realistic systems 
requires much experience. 



Ekkart Kindler 

The following slides are covering the mathematical 

formalisation and some additional details; 

The are not shown in the lecture, but are included 

For completness sake. 

82 ATSE  (02265), L09: Model Checking (Formalisation and Analysis cntd.) 
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5.3. System model (details) 

 Kripke Structures 

 Syntactic Representation 

 Examples 
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Kripke Structures 

 Motivation 

 Definition 

 Computation paths 

 Transition systems 
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Motivation 

There are many different notations for reactive 

systems; the choice depends on the application area 

and the purpose of the model. 

 

Most model checking techniques are independent 

from the particular notation. Therefore, we do not fix a 

notation. 

 

Rather we define Kripke structures as a common 

underlying semantic model. 
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Kripke Structures 

A Kripke structure M consists of 

 

 a finite set of states:           S, 

 a set of initial states:         S0  S, 

 a total transition relation: R  S S  

 a labelling of the states with a set of 

atomic propositions AP:  L: S  2AP  

a 

a 

b 

a b 

  

s1 

s2 

s3 

s4 

s5 

s6 
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Kripke Structures 

We call M = (S, S0, R, L) a Kripke structure over the 

atomic propositions AP. 

 

We say that 

 proposition a  AP is valid in a state s  S, 

if a  L(s), i.e. if a is one of the labels of s. 

 state s´  S is  successor state of state s  S, 

if (s, s´)  R.  
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Kripke Structures 

Remarks: 

 For technical reasons, we require that the transition 
relation R is total; i.e. for each state s  S there exists 
a successor state. 

 

 In principle, we could avoid this restriction. 
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Paths  

For a Kripke structure  M = (S, S0, R, L) we call an 

infinite sequence over S  

 = s0 s1 s2 s3 ...  

a path of M in s0, if for each iN state is a successor 

of si; i.e. if (si ,si+1)  R 

 

A path starting in an initial state of M is called a run of 

M. 
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Paths and Computation Trees 

The set of all paths of M in a state s can be represented as an 

infinite tree, the computation tree of M in s : 

 

Example: 

a 

a 

b 

a b 

  

s1 

s2 

s3 

s4 

s5 

s6 

s3 s4 

s5 

s6 

s4 

s3 s6 

s5 

s3 s6 

s4 s3 s4 

Since the transition relation R is 

total, all paths (branches) of the 

tree are infinite! 
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Systems and Kripke Structures 

 A system resp. a model of a system in another 

notation can be easily mapped to a Kripke structure 

(provided that the model is finite). 

 Sometimes some information of the model will be 

lost. 

 

  Example on next slide 
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Systems and Kripke Structures 

t2 

a 

b 

t1 

c 

d 

t4 t3 

(1,0,1,0) 

(1,0,0,1) 

(0,1,1,0) 

(0,1,0,1) 

A Petri net 

The corresponding 

Kripke structure 

d 

a 

b 

c 
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Systems and Kripke Structures 

t2 

a 

b 

t1 

c 

d 

t4 t3 

t1 

t1 

t2 

t2 

t3 t3 t4 t4 

(1,0,1,0) 

(1,0,0,1) 

(0,1,1,0) 

(0,1,0,1) 

A Petri net 

The information on 

related transitions is lost 

in the Kripke structure!  
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Extensions 

 Labelling of transitions: Transition systems 

 

 Instead of a single transition relation, there are 

many transition relations (in our example for every 

Petri net transition). 
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Syntactic Representation 

 Motivation & Example 

 States 

 Initial states 

 Transitions 

 Labels 
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Motivation 

 Kripke structures are a semantic model for reactive 

systems (a mathematical structure).  

 For real (and large) systems, an explicit 

enumeration of all states and all transitions is 

tedious ( state space explosion). 

 Therefore, we use a notation from logic, for 

representing Kripke structures and transition 

systems in a more compact way. 
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Example 

 Boolean variables: 
V = { a, c } 
 

 Initial formula: 
S0    c 
 

 Transition formula: 
R   
(a´ =  a    c´ =     c )   
(a´ =     a    c´ =  c ) 
 

 Implicit labelling: 
AP = V  

a=0 a=1 

c=0 

c=1 

0 = false 

1 = true 

a, c 

a 

c 
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States 

 Let V = { v1, …, vn } be a set of Boolean variables. 

 We call a mapping : V B an assignment for 

variables V. 

 B = { 0, 1 } denotes the set of Booleans or truth values 

(with 0 = false and 1 = true ). 

 Each assignment can be considered as a state. 

 This way, the set  V implicitly defines a set of states 

S = {  |  : V B }. 
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Initial States 

 The (propositional) formulas over variables V are 

defined as usual. 

 

 Likewise, the validity of a formula p under some 

assignment  is defined as usual; 

we write ╞═ p, if p is valid at . 

 

 A formula S0 over V, the initial formula, defines the 

set of initial states: 
S0 = {  | ╞═ S0 }. 
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Transition relation 

 For a set of variables  V =  { v1  , … , vn   }, 

we define the set  V´ = { v´1, … , v´n } 

of primed variables.  

 
Idea: 

 Assignment for V  : source state of the transition 

 Assignment for V´ : target state of the transition 
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Transition relation 

 An assignment for variables V  V´ can be 

represented as a pair of assignments (, ´) for V : 

 (v) defines the value for v 

 ´(v) defines the value for v´ 

 

 The validity of formula p over V  V´ for a pair of 

assignments (, ´) can be defined as usual : We 

write (, ´) ╞═ p, if p is valid for 

(, ´)  
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Transition relation 

 

 

 A formula R over V  V´, the transition formula, 
defines the transition relation of a Kripke structure in 
the following way: 
 
 R = { (, ´) |  (, ´) ╞═ R  } 
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Labelling 

 The labelling of the states (assignment) can be 

directly derived from the assignment: 

AP = V 

L() =  { v  V  | (v) = 1 } = { v  V  |  ╞═ v } 

 

 i.e. each state (assignment) is labelled with those 

variables that are true in this assignment 
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Summary 

 Boolean variables: 
V = { a, c } 
 

 Initial formula: 
S0    c 
 

 Transition formula: 
R   
(a´ =  a    c´ =     c )   
(a´ =     a    c´ =  c ) 
 

 Implicit labelling: 
AP = V  

a=0 a=1 

c=0 

c=1 

S = { (0,0), (0,1), (1,0), (1,1) } 

S0 = { (0,0) , (1,0) } 

R = { ((0,0),(1,0)) , ((1,0),(0,0)) , 

 ((0,1),(1,1)) , ((1,1),(0,1)) , 

 ((0,0),(0,1)) , ((0,1),(0,0)) , 

 ((1,0),(1,1)) , ((1,1),(1,0))  } 

a, c 

a 

c 
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As a Transition System 

 Boolean variables: 
V = { a, c } 
 

 Initial formula: 
S0    c 
 

 Transition formula: 
T   
{ (a´ =  a    c´ =     c ) , 
   (a´ =     a    c´ =  c ) } 

 Implicit labelling: 
AP = V  

a=0 a=1 

c=0 

c=1 
a, c 

a 

c 
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More Examples 

 In this section, we show by the help of two examples 

how to represent different kinds of systems as 

Kripke structures represented by formulas. 

 

 Synchronous circuit (hardware) 

 Concurrent processes 

 Petri nets 
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( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

Combinatorial Circuit 

  

& 
1 

a 

b 

c 

b´ 

c´ 
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( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

( b´ = (a  b     c ) )    

( c´ =  c )  

( a´ = 0  a´ = 1 )  

Sequential Synchronous Circuit 

  

& 
1 

a 

b 

c 

b´ 

c´ 

clock 

b´ 

c´ 
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( pca = 0  pca´ = 1  x´ = 0    y´ = y  pc2´ = pc2 )  

( pca = 1  pca´ = 0  y´ = 0    x´ = x  pc2´ = pc2 )  

( pcb = 0  pcb´ = 1  x´ = 1    y´ = y  pc1´ = pc1 )  

( pcb = 1  pcb´ = 0  y´ = 1    x´ = x  pc1´ = pc1 ) 

( pca = 0  pca´ = 1  x´ = 0    y´ = y  pcb´ = pcb )  

( pca = 1  pca´ = 0  y´ = 0    x´ = x  pcb´ = pcb )  

( pcb = 0  pcb´ = 1  x´ = 1    y´ = y  pca´ = pca )  

( pcb = 1  pcb´ = 0  y´ = 1    x´ = x  pca´ = pca ) 

( pca = 0  pca´ = 1  x´ = 0    y´ = y  pcb´ = pcb )  

( pca = 1  pca´ = 0  y´ = 0    x´ = x  pcb´ = pcb )  

( pcb = 0  pcb´ = 1  x´ = 1    y´ = y  pca´ = pca )  

( pcb = 1  pcb´ = 0  y´ = 1    x´ = x  pca´ = pca ) 

Concurrent Processes 

  

loop forever 

  x:= 0; 

  y:= 0; 

loop forever 

  x:= 1; 

  y:= 1; 

pca = 0 

pca = 1 

pcb = 0 

pcb = 1 
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Petri nets 

  

semaphor 

request1 

critical1 

idle1 

request2 

critical2 

idle2 
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5.4 ROBDDs (details) 

 Motivation 

 Definition 

 Operations on ROBDDs 

 Quantified Boolean formulas (QBF) 
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Motivation 

 The number of states of realistic systems is gigantic. 

 

Representing sets of states by enumerating every 

state explicitly is a bad idea.  

 

 

 Sets could be represented “symbolically”, 

e.g. by formulas (see next slide) 
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Sets as formulas 

 c 

a 

a  c 

 a  c 

a=0 a=1 

c=0 

c=1 

Boolean 

formulas 

representing 

sets of states 
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Formulas 

 Some operations on sets can be efficiently executed 
for sets that are represented as formulas: 
 union:  p  q 

 disjunction: p  q 

 complement:   p 

 set difference:  p   q 

 

Problem: 

 the same set can have different representations 

 it is extremely inefficient to find out whether two 
formulas represent the same set (NP-complete). 

 therefore, formulas are not a good representation for 
sets of states. 
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Goal 

 Representation of sets such that 

 set operations       and 

 check for equality 

 can be computed efficiently 



Ekkart Kindler 

116 ATSE (02265), L09: Formalisation and Analysis (cntd.) 

Binary Decision Trees 

  

0 0 1 1 0 0 

0 1 

a 

b 

c 

b 

c c c 

d d d d d d d d 

0 0 0 0 0 0 0 0 1 1 

a=b    c=d 

0 

0 

0 

1 

1 

1 
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Identify same sub-trees 

  

0 0 1 1 0 0 

a 

b 

c 

b 

c c c 

d d d d d d d d 

0 0 0 0 0 0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  

0 0 1 1 0 0 

a 

b 

c 

b 

c c 

d d d d d d 

0 0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  

0 0 

a 

b b 

c c 

d d d d 

0 0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  
a 

b b 

c c 

d d d 

0 0 0 0 1 1 

a=b    c=d 
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Delete redundant nodes 

  
a 

b b 

c c 

d d d 

0 0 0 1 1 

a=b    c=d 
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Delete redundant nodes 

  
a 

b b 

c c 

d d d 

0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  
a 

b b 

c 

d d 

0 0 0 1 1 

a=b    c=d 
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Identify same sub-trees 

  
a 

b b 

c 

d d 

0 0 0 1 

a=b    c=d 
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Result 

  
a 

b b 

c 

d d 

0 1 

a=b    c=d 
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”Prettified result”: ROBDD 

  

a 

b b 

c 

d d 

0 1 

a=b    c=d 
ROBDD 

 All variables on the paths occur in 

the same Order (we had that from 

the start) 

 No identical sub-graphs anymore 

 No redundant nodes anymore 

 R educed Ordered 

   Binary Decision Diagram 
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Observations 

 For every set (and a fixed variable order) there 

exists exactly one ROBDD representing it! 

 

 For many practically relevant sets, the ROBBDs 

representing them are small. 

 

 The size of the ROBDDs depends on the chosen 

variable order (on the paths):  

 For example, the ROBDD for the set characterized by 

a=b    c=d  is small with variable order a < b < c < d; 

it is bigger with variable order a < c <  d < b. 
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Observations 

 There are sets for which the ROBDD will be big for 
any variable order (multiplication) 

 

 Finding good or even optimal variable orders is one 
of the challenges of symbolic model checking 

 

 There is no efficient way to find an optimal variable 
order in general (results from complexity theory) 

 But, there are heuristics: 
 Variables that are „somehow related“ should be close to 

each other  

 Local optimisations by switching two variables 
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Question 

 How do we generate an ROBDD? 

 

 

 Answer: Start with full tree and reduce it! 
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Question 

 How do we generate an ROBDD? 

 

 

 Answer: Start with full tree and reduce it! 
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Operationen in ROBBDs 

 Boolean variable 

 Negation 

 Restriction and Shannon expansion 

 Binary operations 

 ROBDDs and Kripke structures 
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Boolean variable 

The set represented by variable a is represented by 

the ROBBD: 

 

 

0 1 

a 
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Negation 

a 

b b 

c 

d d 

0 1 

a 

b b 

c 

d d 

1 0 

 
negation 
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Restriction & Shannon expansion 

 For a set (resp. Boolean function) p over variables 

v1, … ,vn  and a Boolean value t  B, we define the 

Boolean function p|vi  t by 

 

  p|vi  t(v1, … ,vn ) = p(v1 , … vi-1 , t ,vi+1 , … , vn ) 

 

 p|vi  t is called restriction of p. 

 

 It holds (Shannon expansion of p ): 

 

  p = ( v  p|v  0 )  ( v  p|v  1)  
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Restriktion in ROBDDs 

 For a ROBDD representing a Boolean function p, the 
ROBDD for the p|v  t  can be obtained as follows: 

 

 
 

 

 

 

 

 Subsequently: systematic reduction 
of the resulting ROBDD. 

d 

a 
c 

v  
Restrict 

e 

t t 

a 
c 

d e 

Complexity: 

O(|p|) 

Complexity: 

O(|p|log (|p|)) 
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Restriction: Special case 

 An important special case is the restriction to the 

first variable v1 of the ROBDD: 

 

p|v1  0 bzw. p|v1  1 

 

 

 

 

 

 

v1 

Compexity: 

O(1) 

p|v1  0 p|v1  1 
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Boolean operators 

 The binary Boolean operations can be formulated  

recursively by the help of the Shannon expansion:  

 

 p  q =  ( v  (p|v  0   q|v  0 ) )  

 (    v  (p|v  1   q|v  1 ) ) 

 p  q =  ( v  (p|v  0   q|v  0 ) )  

 (    v  (p|v  1   q|v  1 ) ) 

 

 p  q =  ( v  (p|v  0   q|v  0 ) )  

 (    v  (p|v  1   q|v  1 ) ) 

 

 

Recursion 
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Binary Boolean operations 

ROBDD for p  q from ROBDDs for p and q: 

 Generate ROBDDs for p|v  0 , q|v  0  , p|v  1 , and q|v  1  

 Construct recursively p|v  0  q|v  0 and p|v  1  q|v  1  

 The OBDD for p  q is: 

 

 

 

 

 

 

 

 

 Reduce the OBDD systematically to an ROBDD.  

v 

p|v  0  q|v  0 p|v  1  q|v  1 

Overall complexity (if 

cleverly implemented): 

  O( |p| |q|) 
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ROBDDs: Summary 

 As long as all involved ROBDDs remain small, 

all operations on ROBDDs are efficient 

 

 There are many libraries implementing ROBDDs and the 

operations on them (often with clever algorithms for 

optimizing the variable order). MCiE is a very simple 

implementation. 

 

 In practice, all ROBDDs in the same context are maintained 

in a single data structure (as a „forest“ of ROBDDs and hash 

tables for avoiding duplicate nodes). Then, equality of 

ROBDDs can be decided in constant time (same pointer).  
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Quantified Boolean formulas 

 For model checking, we need Boolean formulas 

with quantification of Boolean variables v (QBF): 

 v . p 

  v . p is just an abbreviation for p|v  0  p|v  1 

  v . p is an abbreviation for 

 v1 . (  v2 . ( ... (  vn . p ) …) )  

 

 Respectively,  v . p  stands for p|v  0   p|v  1 

 And  v . p stands for 

  v1 . ( v2 . ( ... (  vn . p ) …) ) 
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Relation product 

 For a formula,  p(u,v) over variables U and V and a formula 
q(v, w) over variables V and W , we call 
 

     v . p(u,v)   q(v, w) 
 
the relation product of p(u,v) and q(v, w). 

 

 The ROBDD for the relation product can be realized with 
the above abbreviations by the Boolean operations. 
That, however, is a bit inefficient.  

 

 In practice, the relation product is implemented directly. The 
worst case complexity is exponential; but, it works 
reasonably well in many practical setting. 
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5.5 Symbolic model checking 

Represent everything, i.e. initial condition, transition 

relation as well as the result, as ROBDDs: 

 
Given: 

 S0 and R  as ROBDDs over V resp. V  V´ 

 a CTL-Formula p. 

 

Wanted: 

 The ROBDD for the set of states Sp 

(the set of states in which p is true). 
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Algorithms for CTL 

 We assume that we have calculated the ROBDDs for the 

sets Sp and Sq already 

 

 Next we give the algorithms for calculating the ROBDDs for 

the sets 

 

 Sp  q ,  Sp  q and  Sp , 

 SEX p , 

 SEG p   and 

 SE[ p U q ] 

  

These are the 

Boolean operations. 

Algorithms on the 

following slides! 
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Algorithm for EX p 

Observation: 

 EX p     v´. R (v , v´)  p(v´) 

Given ans 

ROBDD 

p(v) given 

as ROBDD 

Relation product 

on ROBDDs 
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 The only thing left to do is to produce an ROBDD for p(v´) 
from an ROBDD for p(v): 
 

 

 

 

 

 

 

 

 

 In practice, this renaming is done on the fly (and only 
temporarily) when the relation product is calculated 

Algorithm for EX p 

a 

b c 

0 1 

a´ 

b´ c´ 

0 1 

 
Rename 

Complexity: 

O(|p|) 
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until Si +1 = Si = SE[ p U q ] 

  

Reminder: E[ p U q ] 

Given: Sp  and Sq 

Wanted:  SE[ p U q ]  

S0   = Sq 

S1   = Sq  ( Sp   EX(S0)) 

S2   = Sq  ( Sp   EX(S1)) 

Si + 1 = Sq  ( Sp   EX(Si)) 

... 
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Algorithm for E[ p U q] 

 In this algorithm, the following operations on sets 

(ROBDDs) occur: 

 test for equality 

 union 

 intersection 

 EX(S) 

 For all these operations, we have algorithms already 

(more or less efficient) 

 If the iteration does not change anything (check for 

equality), this is the ROBDD for SE[ p U q]. 
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Procedure checkEU(Sp,Sq) 

S:= Sp ; // represented as ROBDD 

 

repeat 

 S´:= S; 

 S:= Sq  ( Sp  checkEX(S)); 

until S = S´;  

 

return S;  procedure 

for EX(S) 

  
ROBDD 

operations 

Check for 

equality! 
(answers question on 

 slide 10) 
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until Si +1 = Si = SEG p 

  

Reminder EG p  

Given: Sp 

Wanted:  SEG p  

S0   = Sp  

S1   = Sp    EX(S0 ) 

S2   = Sp    EX(S1) 

Si +1 = Sp    EX(Si ) 

... 

This is the inefficient algorithm from 

the introduction. 

With the help of ROBDDs it becomes 

reasonably efficient.  
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Procedure checkEX(Sp) 

S:= Sp; // represented as ROBDD 

 

repeat 

 S´:= S; 

 S:= Sp  checkEX(S); 

until S = S´;  

 

return S;  procedure 

for EX(S) 

ROBDD 

operation 

Check for 

equality 
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Symbolic model checking 

 The use of ROBDDs for the  representation of sets of states 
is called symbolic model checking (as in contrast to explicit 
model checking). 

 Symbolic model checking contributed to the initial success of 
model checking (SMV and today NuSMV)! 

 

 Though it uses more inefficient algorithms as one would use 
with explicit sets, symbolic model checking is sometimes 
more efficient (but that depends!). 

 

 It does not work always (for bigger examples). 

 There are many other techniques for model checking! 

 To date, applying model checking for realistic systems 
requires much experience. 


