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VI. Formalisation and Analysis 
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1. Motivation 

Questions: 

 Why do we use models? 

 Understanding problems / solutions 

 Communication of ideas 

 Code generation / execution 

 Analysis and Verification 

 

 How do we define what models mean? 

 MOF can be defined in itself?! 

 In natural language (typically in English) 

 Mathematics (the ultimate resort in every field) 

 

 In particular, when it comes to behaviour models, 

MOF is not (yet?) powerful enough to define it. 
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Motivation 

Questions: 

 How do we make sure that the models are correct? 

 Analyse the models (and the state space) 

 ”Formal methods”: all kinds of clever techniques to 

analyse and verify models efficiently (avoiding exploring 

all states explicitly, representing sets of states 

symbolically, ...) 

 

 How can we be sure the generated code is correct? 

 Define the semantics of both the model and the code 

 Verify that the code generator preserves them 
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Motivation 

As long as we cannot express the meaning of models  

fully in MOF: 

 

 We need to be able to formalize the syntax and the 

semantics in mathematics 
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2. Formalising (abstract) syntax  

Example: Petri nets 

Place Transition 

1 source 

1 target 

Arc 

* 

PetriNet 

Token 
* 

Node 

Object 

A Petri net N = (P, T, F ) consist of 

two disjoint sets P and T and a 

relation F   (P   T )  (T   P ). 

The elements of P are called the places 

of N, the elements of T are called the 

transitions of N, and the elements of  F 

are called the arcs of N. 

 

The relation F  is also called the flow-

relation of N. 

Definition 1 (Petri net) 
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Formalising (abstract) syntax  

Example: Petri nets 

Place Transition 

1 source 

1 target 

Arc 

* 

PetriNet 

Token 
* 

Node 

Object 

Let N = (P, T, F ) be a Petri net. 

A marking of N is a mapping 

m: P  IN.  

Definition 2 (Marking of a Petri net) 
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Formalising (abstract) syntax  

Example: Petri nets 

Place Transition 

1 source 

1 target 

Arc 

* 

PetriNet 

Token 
* 

Node 

Object 
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Formalising (abstract) syntax  

Example: Petri nets 

Place Transition 

1 source 

1 target 

Arc 

* 

PetriNet 

Token 
* 

Node 

Object 

Let N be a Petri net and let m0 be a 

marking of N. Then, we call 

 = (N , m0 ) a Petri net system.  

Definition 3 (Petri net system) 

Let N = (P, T, F ) be a Petri net. 

A marking of N is a mapping 

m: P  IN.  

Definition 2 (Marking of a Petri net) 

A Petri net N = (P, T, F ) consist of 

two disjoint sets P and T and a 

relation F   (P   T )  (T   P ). 

Definition 1 (Petri net) 
context Arc inv: 
( self.source.oclIsKindOf(Place) and   
 self.target.oclIsKindOf(Transition)  ) 
or 
( self.source.oclIsKindOf(Transition)   
   and   
 self.target.oclIsKindOf(Place)   ) 
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Formalising (abstract) syntax  

Example: Place/Transition system 

Place Transition 

1 source 

1 target 

Arc 
 

* 

PetriNet 

Token 
* 

Node 

Object 

Let N = (P, T, F ) be a Petri net, let m0 

be a marking of N and W: F IN \ {0}. 

Then, we call  = (N , W, m0 ) a 

Place/Transition-system (P/T-system).  

Definition 4 (Place/Transition system) 

Let N = (P, T, F ) be a Petri net. 

A marking of N is a mapping 

m: P  IN.  

Definition 2 (Marking of a Petri net) 

A Petri net N = (P, T, F ) consist of 

two disjoint sets P and T and a 

relation F   (P   T )  (T   P ). 

Definition 1 (Petri net) 

w:integer 
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Observations 

 Nodes of a formalism represented as sets 

 different sets for different kinds of nodes 

 different kind: disjointness of sets 

 

 Arcs between nodes as a relation 

 Constraints in form of a restriction 

 

 Labels as mappings 

 

 Definitions systematically build on each other 

(kind of modular) 
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3. Formalising semantics 

  

semaphor 

request1 

critical1 

idle1 

request2 

critical2 

idle2 

Example 
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Firing rule 

  

semaphor 

request1 

critical1 

idle1 

request2 

critical2 

idle2 
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Reachabilitygraph 

  [ i1, s, i2 ] 

[ c1, i2 ] 

[ i1, s, r2 ] 

[ i1, c2 ] 

[ r1, s, i2 ] 

[ r1, s, r2 ] 

[ c1, r2 ] [ r1, c2 ] 

Example 
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Formalising semantics  

Example: Petri nets 

Let N = (P, T, F ) be a Petri net and 

t  T be a transition. 

The marking –t : P  IN is defined by:  

 –t(p) = 1, if (p,t)  F, and 

 –t(p) = 0, if (p,t)  F 

The marking t+ : P  IN is defined by:  

 t+(p) = 1, if (t,p)  F, and 

 t+(p) = 0, if (t,p)  F 

Definition 5 (Markings –t and t+ ) 

t 
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Formalising semantics  

Example: Petri nets 

Let N = (P, T, F ) be a Petri net, t  T be 

a transition, and m be a marking of N. 

A transition t is enabled in marking m, 

if m  –t . 

Then, we write m   

If the transition t is enabled in m, the 

transition can fire, which results in the 

successor marking m’ = ( m - –t ) + t+ . 

Then, we write m  m’ . 

Definition 6 (Firing rule) 

t 

t 

t 
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Formalising semantics  

Example: Petri nets 

Let  = (N , m0 ) be a Petri net system. 

The set of reachable markings R of  

is defined as the least set, such that  

• m0  R 

• if m  R and there exists a 

transition t of N and a marking m’  

such that m  m’, then also 

m’  R  

Definition 7 (Reachable markings) 

t 

t 
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Observations 

The way of defining the behaviour very much depends 

on the formalism, but 

 

 Typically there is some notion of state 

(markings in our example) 

 

 There is one (or more) initial state 

 

 There is a transition relation m  m’ 

 

t 
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4. State space generation 

The inductive definition of the reachable states gives 

an algorithm for computing it (in the finite case): 

R:= { }       // set of already found reachable states 

U:= { m0 }  // set of states that are yet undealt with 

while U  { } do 

  select any m  U 

  U:= U \ { m } 

  R:= R  { m } 

  for each m’ with m  m’ do 

   U:= U  { m’ } 

 

result is R 
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State space generation 

The inductive definition of the reachable states gives 

an algorithm for computing it (in the finite case): 

R:= { }       // set of already found reachable states 

U:= { m0 }  // set of states that are yet undealt with 

while U  { } do 

  select any m  U 

  U:= U \ { m } 

  R:= R  { m } 

  for each m’ with m  m’ do 

   U:= U  { m } 

 

result is R 
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State space generation 

The inductive definition of the reachable states gives 

an algorithm for computing it (in the finite case): 

R = { } 

U = { m0 } 

while U  { } do 

  select any m  U 

  U:= U \ { m } 

  R:= R  { m } 

  for each m’ with m  m’ do 

   if m’  R then U:= U  { m ’} 

 

result is R 
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State space generation 

Where are the bottlenecks? 

 

R = { } 

U = { m0 } 

while U  { } do 

  select any m  U 

  U:= U \ { m } 

  R:= R  { m } 

  for each m’ with m  m’ do 

   if m’  R then U:= U  { m } 

 

result is R 
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Checking properties on the fly 

 

 

R = { } 

U = { m0 } 

while U  { } do 

  select any m  U 

  U:= U \ { m } 

  R:= R  { m } 

  for each m’ with m  m’ do 

   if m’  R then U:= U  { m } 

 

result is R 
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5. Model checking 
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5.1. Terminology 

 Model Checking 

 Validation and Verification 

 Reactive System 
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Model Checking 

 Model checking is a 

technology for 

the fully automatic 

verification of 

reactive systems 

with a finite state space. 
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Terms 

 Technology 

 principle 

 method 

 concept 

 notation 

 tool 

 

 System 

 reactive vs. transformational 

 model 

 Validation 

 requirements 

 specification 

 simulation 

 test 

 verification 

 deductive  

 model based 
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Validation 

Question: Does the system do what it should do? 

system 

S F Kl 
  
eH Jjd 
j  

requirements 
design 

validation 
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Validation 

Problems: 

 requirements are informal in most cases, 
imprecise, incomplete, inconsistent, … 
 

 systems can be very complex 

 

 designing and building systems is very expensive 
 

 the later a flaw is detected the higher the costs 
to repair it 

S F Kl 
  
eH Jjd 
j  
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Validation 

  

system 

S F Kl 
  
eH Jjd 
j  

requirements 

validation 

(formal) 

specification 

a 

a 

b 

a b 

  

model 

verification 

formali-

sation 
validation abstraction 

refinement / 

implementation 
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Validation 

Remarks: 

 most requirements are informal 

 validation is an inherently informal process 

 checking whether a specification captures the 

requirements is inherently informal 

 

 

 verification is a formal process 

(automatic in some cases) that can partially help 

with validation 
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Transformational System 

 accepts some input 

 makes some calculations  

 returns a result 

 

In particular: 

 terminates always (resp. should terminate) 

 no user interaction possible 
(after the input was accepted)  
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Reactive System 

 reacts permanently to input 

 can output results any time 
(dependent on the input) 

 

In particular: 

 is interactive (could even be active or proactive) 

 does not terminate (normally) 

 reactive systems do not „calculate a function“ 
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Reactive vs. transformational 

Information systems are reactive (in most cases) 

 

The classical notions of algorithm and computation are 
defined from the transformational system’s point of 
view 
 

Reactive systems have transformational components 
in most cases 
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Model Checking 

Model checking is tailored to the verification of 

reactive systems 

 

 special notations for „reactive properties“ 

(temporal logics) 

 abstraction from transformational parts 

(and often from data) 

 appropriate for cyclic behaviour 

 

 but on a high level of abstraction only 
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Summary 

 Model checking is a 

technology for 

the fully automatic 

verification of 

reactive systems 

with a finite state space. 
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5.2. Main Concepts and Ideas 

 Kripke structures  (defining the system/model) 

 CTL  (specifying the properties) 

 algorithms  (only basic idea) 

 complexity 
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Systems and Requirements 

  

system 

S F Kl 
  
eH Jjd 
j  

requirements 

meets  
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Model und Specification 

  

model  M 

Kripke structure 

specification A  

AG ( a  AF b )  

Computation Tree Logic (CTL) 

a 

a 

b 

a b 
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Kripke Structure 

A Kripke structure consists of 

 

 a set of  states, 

 with distinguished initial states, 

 a (total) transition relation 

 a labelling of states with a set of 

atomic propositions. 

and 

a 

a 

b 

a b 
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Behaviour 

The behaviour at a state can be represented as a 

computation tree: 

a 

a 

b 

a b 
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CTL-Formulas 

 

 

CTL-formulas are inductively defined: 

 atomic propositions are CTL-formulas 

a, b, ... 

 CTL-formulas combined with a Boolean 

operator are CTL-formulas 

 CTL-formulas combined with temporal 

operators are CTL-formulas 

.  . , .  . ,  . , ... 

EX . , EG . , E[ . U . ], ...  
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Exists neXt:  EX p  

there exists an (immediate) successor in which p holds 

true: 

EX p 

EX p 

EX p EX p 

p p 

p 

p 
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Exists Globally:  EG p 

there exists an infinite path on which p holds in each 

state:  

 
EG p 

EG p 

EG p 

EG p 

EG p 
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Exists Until:  E[ p  U q ] 

there exists a reachable state in which b holds true, 

and up to this state p holds true: 

E[ p U q ] 

E[ p U q ] 

E[ p U q ] 

E[ p U q ] E[p U q ] 
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Abbreviations 

AX p    EX  p  

for all immediate successors, p holds true 

EF p   E [ true U p ]  

in some reachable state, p holds true 

AG p    EF  p  

in all reachable states, p holds true 

AF p    EG  p  

on each path, there exists a state in which p holds 

true 
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System “meets” formula 

A CTL-formula holds for a Kripke structure 

if the formula holds in each initial state.  
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Example 

  

model  M specification p  

AG ( a  AF b )  
a 

a 

b 

a b 

  

How do we prove it? 
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Algorithms 

For each sub-formula, we inductively calculate the  set 

of states, in which this sub-formula is true: 

 

 atomic propositions 

 temporal operators 

 Boolean operators 
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„Algorithm“ for  EX p  

Given: 

The set of states in which 

p holds: Sp 

Wanted: 

The set of states in which 
EX p holds: SEX p 

We also write EX(Sp ) for SEX p 
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until Si+1 = Si = SE[ p U q ] until Si+1 = Si 

  

Algorithm for E[ p  U q ] 

Given: Sp  und Sq 

Wanted:  SE[ p  U q ] 

S0   =  

S1   = Sq  ( Sp   EX(S0)) 

S2   = Sq  ( Sp   EX(S1)) 

Si+1 = Sq  ( Sp   EX(Si)) 

... 
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until Si+1 = Si = SEG p until Si+1 = Si 

  

Algorithm for EG p  

Given: Sp 

Wanted: SEG p  

S0   = S 

S1   = Sp    EX(S0) 

S2   = Sp    EX(S1) 

Si+1 = Sp    EX(Si)  

... 
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Algorithms Summary 

CTL model checking ~ marking algorithm + iteration 

 

 EX p  

 

  
 

 E[ p  U q ]  

 

 

 EG p  
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Complexity 

When implemented in an efficient way, the marking 

algorithm for each operator is linear in the number of 

states of the system:  

 

                       O( | M |  | p | ) 

 

size of the 

model 

size of the 

formula 
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Complexity 

When implemented in an efficient way, the marking 

algorithm for each operator is linear in the number of 

states of the system:  

 

                       O( | M |  | p | ) 

 


