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Questions:

= Why do we use models?
Understanding problems / solutions
Communication of ideas

Code generation / execution
Analysis and Verification

Seriously? j

= How do we define what models ?
= MOF can be defined in itself?!
= |n natural language (typically in English)
= Mathematics (the ultimate resort in every field)

In particular, when it comes to behaviour models,
MOF is not (yet?) powerful enough to define it.
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Questions:

= How do we make sure that the models are correct?
= Analyse the models (and the state space)

= "Formal methods”: all kinds of clever techniques to
analyse and verify models efficiently (avoiding exploring

all states explicitly, representing sets of states
symbolically, ...)

= How can we be sure the generated code Is correct?
* Define the semantics of both the model and the code
* Verify that the code generator preserves them

ATSE (02265), L08: Formalisation and Analysis



Motivation

As long as we cannot express the meaning of models

fully in MOF:
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= We need to be able to formalize the syntax and the
semantics in mathematics

In our case, mainly the
behaviour.

)
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/" A thorough study would be
separate courses. “For.mei
«gemantics’, “Verification’,

“Model checking”

Here, we confine ourselves to a

sttematic example: Petri nets

| Methods”
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2. Formalising ostracyy Syntax |*

Example: Petri nets

PetriNet

!

Object

AN

Node |2

_2} sourd

<
é 1 targ

Transition

Place |‘—

Token

] 4
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Definition 1 (Petri net)

A Petrinet N = (P, T, - ) consist of
two disjoint sets P and T and a
relation = c (P xT)u (T xP).

The elements of P are called the places
of N, the elements of T are called the
transitions of N, and the elements of
are called the arcs of N.

The relation I is also called the flow-
relation of N.

Sometimes, one requires P andJ
T to be finite sets.




Formalising (bstracty Syntax

Example: Petri nets

PetriNet

!

Object

AN

Node

_2} sour
P

<
9 1 targ

Transition

Place |‘—

Token

] 4
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Definition 2 (Marking of a Petri net)

Let N = (P, T, ) be a Petri net.
A marking of N is a mapping
m: P — IN.

Standard symbol for the set of
natural numbers: 0,1,2,3, .-




Formalising (bstracty Syntax

Example: Petri nets

PetriNet

Transition

Token
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Formalising (bstracty Syntax

Example: Petri nets

context Arc inv:
( self.source.oclIsKindOf(Place) and

PetriNet

Place |‘— Token

Transition

Any differences between
the meta-model and the

matics?
ATSE mathe SIS

T self.target.oclIsKindOf(Transition) )
or
( self.source.oclIsKindOf(Transition)
Object and
4 self.target.oclIsKindOf(Place) )
' 4 sourd :
Node |
N
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Definition 1 (Petri net)

A Petrinet N = (P, T, =) consist of
two disjoint sets P and T and a
relation = c (P xT)u (T xP).

Definition 2 (Marking of a Petri net)

Let N = (P, T, ) be a Petri net.
A marking of N is a mapping
m: P — IN.

Definition 3 (Petri net system)

Let N be a Petri net and let m, be a
marking of N. Then, we call
2. = (N, my) a Petri net system.



Formalising (bstracty Syntax
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Variation of Petri net§
(maybe the most typical form of

Example: Place/Transition system | Petri nets)

PetriNet

_2} sourd

Transition

Token

ATSE (02265), L08: Formalisation and Analysis

Definition 1 (Petri net)

A Petrinet N = (P, T, =) consist of
two disjoint sets P and T and a
relation = c (P xT)u (T xP).

Definition 2 (Marking of a Petri net)

Let N = (P, T, ) be a Petri net.
A marking of N is a mapping
m: P — IN.

Definition 4 (Place/Transition system)

Let N = (P, T, - ) be a Petri net, let m,
be a marking of N and \W: F — IN \ {0}.
Then,wecall > =(N,W, m;) a
Place/Transition-system (P/T-system).
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= Nodes of a formalism represented as sets
= different sets for different kinds of nodes
= different kind: disjointness of sets

= Arcs between nodes as a relation
= Constraints in form of a restriction

of places (number of tokens).

—
= Labels as mappings Conceptually, tokens are Iabels}

= Definitions systematically

nuild on each other
(kind of modaular)

ATSE (02265), L08: Formalisation and Analysis 11
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Example
request, request,
critical, critical,
semaphor
idle, idle,
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request, request,
criticaly critical,
semaphor
idle, idle,
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Example (il s, i2]

/N

[rl, s, 2] [I11,s,12]

[cl,i2] [rl, s, 2] [I11, c2]

VAN

[cl, r2] [rl, c2 ]

ATSE (02265), L08: Formalisation and Analysis 14
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Example: Petri nets Definition 5 (Markings = and t*)

LetN = (P, T, F) be a Petri net and
t € T be a transition.

O,

@\ _— The marking —t : P — IN is defined by:
E @ “t(p) =1, if (p,t) € F, and

The marking t* : P — IN is defined by:
t*(p) = 1, if (t,p) € F, and
t"(p) =0, if (t,p) ¢ F

O,

~ )

The relations 2, <, and the
operations + and - carry over 1o

; intwise).
Lmarkmgs (pointw ) )

ATSE (02265), L08: Formalisation and Analysis 15
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Formalising semantics

Example' Petri nets Definition 6 (Firing rule)

LetN=(P, T, F) be aPetrinet,t € T be
a transition, and m be a marking of N.

@\ / A transition t is enabled in marking m,

O,

Then, we write m l)

O,

If the transition t is enabled in m, the
transition can fire, which results in the
successor markingm’=(m-"t) +t",

Then, we write m 1) m’.

ATSE (02265), L08: Formalisation and Analysis 16



=
—
=

‘ DTU Compute
partment of

Formalising semantics

M

Example: Petri nets

Definition 7 (Reachable markings)

Let > = (N, my) be a Petri net system.

O,

The set of reachable markings Ry of 2.
/ : is defined as the least set, such that

O
@/ TS - my e Ry

« if m € Ryand there exists a
transition t of N and a marking m’
such that m -5 m’, then also
m’ e Ry

O,

This inductive definition,_ \
actually, “defines” an algorithm
to calculate all reachable states

Uif the set is finite). D

ATSE (02265), L08: Formalisation and Analysis 17
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The way of defining the behaviour very much depends
on the formalism, but

_ . . . ‘
Typlcz_illy there IS some notion of StatQTnPetri s these are
(markings in our example)

the transitions; in other
formalisms, it cou}d be
events or something

= There Is one (or more) Initial state%comp\ex. -

= There is a transition relation m 1> m’

"In our example, we just defined thg_ W
reachable markings. The reachablility

graph would contain also these

_transitions. —

ATSE (02265), L08: Formalisation and Analysis
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4. State space generation

The inductive definition of the reachable states gives
an algorithm for computing it (in the finite case):
R:={} I/ set of already found reachable states
U:={m,} // set of states that are yet undealt with
while U ={} do
| selectanym e U
U=U\{m}
R=Ru{m}
for each m’ with m —- m’do
L L U=uu{m’}

resultis R

ATSE (02265), L08: Formalisation and Analysis 19
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State space generation

‘ DTU Compute

The inductive definition of the reachable states gives

an algorithm for computing it (in the finite case):
R:={} I/ set of already found reachable states
U:={m,} // set of states that are yet undealt with

while U # { } do Warning: This algorithm does not\
| selectanym e U terminate—even when there are
only finitely many reachable
U=Uu \{ m } states!
R=Ru{m }. th?
for each m*with m — m"do ﬁAs soon as there is somg cycle in W
I‘ |— U=uu { m } the reachability graph, this
kalgorithm does not work!

resultis R

ATSE (02265), L08: Formalisation and Analysis 20
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The inductive definitio

— s gives
an algorithm for com| Covuld be lifo, fifo, random; this doesYT" |

not influence the result (in the finite

R={} case), only the order in which it is
_ computed. Y,
U={mg} N
while U = { } do -
| select any m e U Now, the algorithm terminates, if \
U=U\{m} there are only finitely many
' reachable states. r
R=Ru{m} How about efficiency?
for each m’ with m — m’ do L —

L L ifmeRthenU:=Uu{m?}

resultis R

ATSE (02265), L08: Formalisation and Analysis 21
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Sometimes, identifying which

Where are th
e bottlenecks? ransitions are possible requires

some effort.
R={} . .
For Petri nets, this can be done
U={mg} much more efficiently if we
- remember which transitions have
while U = { } do been enabled in m in order to

calculate the ones that are
enabled in m'.

| selectanym e U
U=U\{m}
R=Ru{m}
for each m’ with

0]
i @m’g RthenU=Uu{m}

Similar techniques exist for other
formalisms. The details very much
depend on the formalism.

R can be huge! Iterating\
over it for checking ¢ IS

resultis R a bad idea!
Use hash function or

another good idea.

ATSE (02265), L08: Formalisation and Analysis
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e
Some properties of the system

R=Y can be checked on the fly:
U={mp] > invariants

| locks
while U # {} do > deadloc »
| selectanym e U

U:=U \{ m }

R=Ru{m}

foreach m’ with m —- m’do
L L ifmeRthenU:=Uu{m}

resultis R

ATSE (02265), L08: Formalisation and Analysis 23
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(ere we consider model checking (or
some techniques from model
checking) as an example for the
systematic analysis of the state
space.

Today, model checking is a field of its
own and could cover a full 10 ECTS-
point course; here, we just give an

Q/erview. /

ATSE (02265), L08: Formalisation and Analysis



5.1. Terminology
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= Model Checking

= Validation and Verification
= Reactive System

ATSE (02265), L08: Formalisation and Analysis
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Model checking is a
technology for

the fully automatic
verification of

reactive systems

with a finite state space.

Which should typically
be quite small.

Some advanced
technigues can even
deal with infinite state

ATSE (02265), L08: Formalisation and Analysis spaces.
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Terms

= Technology
= principle
= method
= concept
= notation
= tool

= System
= reactive vs. transformational
= model

ATSE (02265), L08: Formalisation and Analysis
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= Validation

reguirements
specification
simulation
test

verification
deductive
model based

27
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requirements system

design

>

validation

Question: Does the system do what it should do?

ATSE (02265), L08: Formalisation and Analysis 28
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Problems:

o 0 O
= requirements are informal in most cases,

Imprecise, incomplete, inconsistent, ...

o
= systems can be very complex S AW

= designing and building systems Is very expensive

= the later a flaw is detected the higher the costs
to repair it

ATSE (02265), L08: Formalisation and Analysis
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Ekkart Kindler -
requirements system
validation
<€
formall- validation abstraction refmement / .
sation |mplement‘at|on
a
N
a
<€
verification a -
or code
(formal) generation!
specification

model

ATSE (02265), L08: Formalisation and Analysis 30
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Validation

Remarks:
= most requirements are informal
= validation is an inherently informal process

= checking whether a specification captures the
requirements is inherently informal

= verification is a formal process
(automatic in some cases) that can partially help
with validation

ATSE (02265), L08: Formalisation and Analysis 31



Transformational System
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= accepts some input
= makes some calculations
= returns a result

In particular:
= terminates always (resp. should terminate)

= NO user interaction possible
(after the input was accepted)

ATSE (02265), L08: Formalisation and Analysis
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Reactive System
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= reacts permanently to input

= can output results any time
(dependent on the input)

In particular:

= |S Interactive (could even be active or proactive)

= does not terminate (normally)

= reactive systems do not ,calculate a function”

ATSE (02265), L08: Formalisation and Analysis
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Reactive vs. transformational
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Information systems are reactive (in most cases)

The classical notions of algorithm and computation are
defined from the transformational system’s point of
view

Reactive systems have transformational components
IN Most cases

ATSE (02265), L08: Formalisation and Analysis 34
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Model checking is tailored to the verification of
reactive systems

= special notations for ,reactive properties”
(temporal logics)

= abstraction from transformational parts
(and often from data)

= appropriate for cyclic behaviour

= put on a high level of abstraction only

ATSE (02265), L08: Formalisation and Analysis
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Model checking is a
technology for

the fully automatic
verification of
reactive systems

with a finite state space.

ATSE (02265), L08: Formalisation and Analysis

36



5.2. Main Concepts and Ideas
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= Kripke structures (defining the system/model)

= CTL (specifying the properties)
= algorithms (only basic idea)
= complexity

ATSE (02265), L08: Formalisation and Analysis
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Systems and Requirements

system

meets

ATSE (02265), L08: Formalisation and Analysis
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— AG(a=AF D)
a
Kripke structure Computation Tree Logic (CTL)

ATSE (02265), L08: Formalisation and Analysis 39



Kripke Structure oot

A Kripke structure consists of
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= a set of states,

= with distinguished initial states,

= a (tota

= alabe

) transition relation and

ling of states with a set of

atomic propositions.

ATSE (02265), L08: Formalisation and Analysis 40
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The behaviour at a state can be represented as a
computation tree:

a

/Iﬂ;te that all paths are \
infinite!

Thatis a conseque_r)ce of the
totality of the transition

Qelation.
7 VN - ! _/

ATSE (02265), L08: Formalisation and Analysis 41



=
—
=

CT | -Formu | as a, b, . ‘ Dsgmrtmentof Agied Hathematicsand Bomputer Scence

M

VAU L

, [ ] , L ]

EX.,EG ., E[.U.|, ..
CTL-formulas are inductively defined:

= atomic propositions are CTL-formulas

= CTL-formulas combined with a Boolean
operator are CTL-formulas

» CTL-formulas combined with temporal
operators are CTL-formulas

ATSE (02265), L08: Formalisation and Analysis 42
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there exists an (immediate) successor in which p holds
true:

EX p

EXDp P

ATSE (02265), L08: Formalisation and Analysis 43



Exists Globally: EG p
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there exists an infinite path on which p holds in each

state:

EG p

ATSE (02265), L08: Formalisation and Analysis
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EGp
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there exists a reachable state in which 5 holds true,
and up to this state p holds true:

E[pUq]

E[pUq]
E[pUq]

E[pUq] E[pUq]

ATSE (02265), L08: Formalisation and Analysis 45
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for all iImmediate successors, p holds true
EF p= E | true U p |

INn some reachable state, p holds true

In all reachable states, p holds true

on each path, there exists a state in which p holds
true

E)ualities J

ATSE (02265), L08: Formalisation and Analysis 46
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A CTL-formula holds for a Kripke structure
If the formula holds in each initial state.

ATSE (02265), L08: Formalisation and Analysis
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model M specification p

a

— AG(a=AF D)

How do we prove it?

ATSE (02265), L08: Formalisation and Analysis 48
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For each sub-formula, we inductively calculate the set
of states, in which this sub-formula is true:

= atomic propositions /]
= Boolean operators  [/]

= temporal operators

ATSE (02265), L08: Formalisation and Analysis 49
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Given:

The set of states in which
p holds: §

Wanted:

The set of states in which
EX p holds: Sgx,

We also write EX(S), ) for Sgx

ATSE (02265), L08: Formalisation and Analysis
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Ekkart Kindler :
/"As stated here, this algorithm is quite inefficient. o -
There are more efficient ways to do this. ‘ ]
But, even this inefficient algorithm turns out to be <
quite efficient when used with the right data
Qs‘tructure (ROBDDs, s€€ next lecture). - <

Given: S, und §
q
Wanted: Sg, v,

S, =0
S, =5,0(S, NEX(S))
S, =5,0(S, NEX(S))

SH—] = Sq U ( Sp M EX(SI))

until S, ;= 5,= Sg vy

l

ATSE (02265), L08: Formalisation and Analysis
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< 3
Given: §,
Wanted: Sg¢,
S, =8
S, =5, N EX(S)
S, =S, N EX(5)
Si=8, N EX(5)
until 5., = 5= Sgq
52
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Algorithms Summary
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CTL model checking ~ marking algorithm + iteration

" EXp &
" E[p Ugqg] ‘“
<
" EGp
<

ATSE (02265), L08: Formalisation and Analysis 53
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When implemented in an efficient way, the marking
algorithm for each operator is linear in the number of
states of the system:

OCIM|-|pl)

size of the size of the
model formula

ATSE (02265), L08: Formalisation and Analysis 54
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