
Advanced Topics in

Software Engineering (02265)

Ekkart Kindler

Ekkart Kindler

2 ATSE (02265), L08: Formalisation and Analysis

VI. Formalisation and Analysis

Ekkart Kindler

3 ATSE (02265), L08: Formalisation and Analysis

1. Motivation

Questions:

 Why do we use models?

 Understanding problems / solutions

 Communication of ideas

 Code generation / execution

 Analysis and Verification

 How do we define what models mean?

 MOF can be defined in itself?!

 In natural language (typically in English)

 Mathematics (the ultimate resort in every field)

 In particular, when it comes to behaviour models,

MOF is not (yet?) powerful enough to define it.

Ekkart Kindler

4 ATSE (02265), L08: Formalisation and Analysis

Motivation

Questions:

 How do we make sure that the models are correct?

 Analyse the models (and the state space)

 ”Formal methods”: all kinds of clever techniques to

analyse and verify models efficiently (avoiding exploring

all states explicitly, representing sets of states

symbolically, ...)

 How can we be sure the generated code is correct?

 Define the semantics of both the model and the code

 Verify that the code generator preserves them

Ekkart Kindler

5 ATSE (02265), L08: Formalisation and Analysis

Motivation

As long as we cannot express the meaning of models

fully in MOF:

 We need to be able to formalize the syntax and the

semantics in mathematics

Ekkart Kindler

6 ATSE (02265), L08: Formalisation and Analysis

2. Formalising (abstract) syntax

Example: Petri nets

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

A Petri net N = (P, T, F) consist of

two disjoint sets P and T and a

relation F  (P  T)  (T  P).

The elements of P are called the places

of N, the elements of T are called the

transitions of N, and the elements of F

are called the arcs of N.

The relation F is also called the flow-

relation of N.

Definition 1 (Petri net)

Ekkart Kindler

7 ATSE (02265), L08: Formalisation and Analysis

Formalising (abstract) syntax

Example: Petri nets

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

Let N = (P, T, F) be a Petri net.

A marking of N is a mapping

m: P  IN.

Definition 2 (Marking of a Petri net)

Ekkart Kindler

8 ATSE (02265), L08: Formalisation and Analysis

Formalising (abstract) syntax

Example: Petri nets

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

Ekkart Kindler

9 ATSE (02265), L08: Formalisation and Analysis

Formalising (abstract) syntax

Example: Petri nets

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

Let N be a Petri net and let m0 be a

marking of N. Then, we call

 = (N , m0) a Petri net system.

Definition 3 (Petri net system)

Let N = (P, T, F) be a Petri net.

A marking of N is a mapping

m: P  IN.

Definition 2 (Marking of a Petri net)

A Petri net N = (P, T, F) consist of

two disjoint sets P and T and a

relation F  (P  T)  (T  P).

Definition 1 (Petri net)
context Arc inv:
(self.source.oclIsKindOf(Place) and
 self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)
 and
 self.target.oclIsKindOf(Place))

Ekkart Kindler

10 ATSE (02265), L08: Formalisation and Analysis

Formalising (abstract) syntax

Example: Place/Transition system

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

Let N = (P, T, F) be a Petri net, let m0

be a marking of N and W: F IN \ {0}.

Then, we call  = (N , W, m0) a

Place/Transition-system (P/T-system).

Definition 4 (Place/Transition system)

Let N = (P, T, F) be a Petri net.

A marking of N is a mapping

m: P  IN.

Definition 2 (Marking of a Petri net)

A Petri net N = (P, T, F) consist of

two disjoint sets P and T and a

relation F  (P  T)  (T  P).

Definition 1 (Petri net)

w:integer

Ekkart Kindler

11 ATSE (02265), L08: Formalisation and Analysis

Observations

 Nodes of a formalism represented as sets

 different sets for different kinds of nodes

 different kind: disjointness of sets

 Arcs between nodes as a relation

 Constraints in form of a restriction

 Labels as mappings

 Definitions systematically build on each other

(kind of modular)

Ekkart Kindler

12 ATSE (02265), L08: Formalisation and Analysis

3. Formalising semantics

semaphor

request1

critical1

idle1

request2

critical2

idle2

Example

Ekkart Kindler

13 ATSE (02265), L08: Formalisation and Analysis

Firing rule

semaphor

request1

critical1

idle1

request2

critical2

idle2

Ekkart Kindler

14 ATSE (02265), L08: Formalisation and Analysis

Reachabilitygraph

 [i1, s, i2]

[c1, i2]

[i1, s, r2]

[i1, c2]

[r1, s, i2]

[r1, s, r2]

[c1, r2] [r1, c2]

Example

Ekkart Kindler

15 ATSE (02265), L08: Formalisation and Analysis

Formalising semantics

Example: Petri nets

Let N = (P, T, F) be a Petri net and

t  T be a transition.

The marking –t : P  IN is defined by:

 –t(p) = 1, if (p,t)  F, and

 –t(p) = 0, if (p,t)  F

The marking t+ : P  IN is defined by:

 t+(p) = 1, if (t,p)  F, and

 t+(p) = 0, if (t,p)  F

Definition 5 (Markings –t and t+)

t

Ekkart Kindler

16 ATSE (02265), L08: Formalisation and Analysis

Formalising semantics

Example: Petri nets

Let N = (P, T, F) be a Petri net, t  T be

a transition, and m be a marking of N.

A transition t is enabled in marking m,

if m  –t .

Then, we write m 

If the transition t is enabled in m, the

transition can fire, which results in the

successor marking m’ = (m - –t) + t+ .

Then, we write m  m’ .

Definition 6 (Firing rule)

t

t

t

Ekkart Kindler

17 ATSE (02265), L08: Formalisation and Analysis

Formalising semantics

Example: Petri nets

Let  = (N , m0) be a Petri net system.

The set of reachable markings R of 

is defined as the least set, such that

• m0  R

• if m  R and there exists a

transition t of N and a marking m’

such that m  m’, then also

m’  R

Definition 7 (Reachable markings)

t

t

Ekkart Kindler

18 ATSE (02265), L08: Formalisation and Analysis

Observations

The way of defining the behaviour very much depends

on the formalism, but

 Typically there is some notion of state

(markings in our example)

 There is one (or more) initial state

 There is a transition relation m  m’

t

Ekkart Kindler

19 ATSE (02265), L08: Formalisation and Analysis

4. State space generation

The inductive definition of the reachable states gives

an algorithm for computing it (in the finite case):

R:= { } // set of already found reachable states

U:= { m0 } // set of states that are yet undealt with

while U  { } do

  select any m  U

 U:= U \ { m }

 R:= R  { m }

 for each m’ with m  m’ do

   U:= U  { m’ }

result is R

Ekkart Kindler

20 ATSE (02265), L08: Formalisation and Analysis

State space generation

The inductive definition of the reachable states gives

an algorithm for computing it (in the finite case):

R:= { } // set of already found reachable states

U:= { m0 } // set of states that are yet undealt with

while U  { } do

  select any m  U

 U:= U \ { m }

 R:= R  { m }

 for each m’ with m  m’ do

   U:= U  { m }

result is R

Ekkart Kindler

21 ATSE (02265), L08: Formalisation and Analysis

State space generation

The inductive definition of the reachable states gives

an algorithm for computing it (in the finite case):

R = { }

U = { m0 }

while U  { } do

  select any m  U

 U:= U \ { m }

 R:= R  { m }

 for each m’ with m  m’ do

   if m’  R then U:= U  { m ’}

result is R

Ekkart Kindler

22 ATSE (02265), L08: Formalisation and Analysis

State space generation

Where are the bottlenecks?

R = { }

U = { m0 }

while U  { } do

  select any m  U

 U:= U \ { m }

 R:= R  { m }

 for each m’ with m  m’ do

   if m’  R then U:= U  { m }

result is R

Ekkart Kindler

23 ATSE (02265), L08: Formalisation and Analysis

Checking properties on the fly

R = { }

U = { m0 }

while U  { } do

  select any m  U

 U:= U \ { m }

 R:= R  { m }

 for each m’ with m  m’ do

   if m’  R then U:= U  { m }

result is R

Ekkart Kindler

24 ATSE (02265), L08: Formalisation and Analysis

5. Model checking

Ekkart Kindler

25 ATSE (02265), L08: Formalisation and Analysis

5.1. Terminology

 Model Checking

 Validation and Verification

 Reactive System

Ekkart Kindler

26 ATSE (02265), L08: Formalisation and Analysis

Model Checking

 Model checking is a

technology for

the fully automatic

verification of

reactive systems

with a finite state space.

Ekkart Kindler

27 ATSE (02265), L08: Formalisation and Analysis

Terms

 Technology

 principle

 method

 concept

 notation

 tool

 System

 reactive vs. transformational

 model

 Validation

 requirements

 specification

 simulation

 test

 verification

 deductive

 model based

Ekkart Kindler

28 ATSE (02265), L08: Formalisation and Analysis

Validation

Question: Does the system do what it should do?

system

S F Kl
 
eH Jjd
j 

requirements
design

validation

Ekkart Kindler

29 ATSE (02265), L08: Formalisation and Analysis

Validation

Problems:

 requirements are informal in most cases,
imprecise, incomplete, inconsistent, …

 systems can be very complex

 designing and building systems is very expensive

 the later a flaw is detected the higher the costs
to repair it

S F Kl
 
eH Jjd
j 

Ekkart Kindler

30 ATSE (02265), L08: Formalisation and Analysis

Validation

system

S F Kl
 
eH Jjd
j 

requirements

validation

(formal)

specification

a

a

b

a b

model

verification

formali-

sation
validation abstraction

refinement /

implementation

Ekkart Kindler

31 ATSE (02265), L08: Formalisation and Analysis

Validation

Remarks:

 most requirements are informal

 validation is an inherently informal process

 checking whether a specification captures the

requirements is inherently informal

 verification is a formal process

(automatic in some cases) that can partially help

with validation

Ekkart Kindler

32 ATSE (02265), L08: Formalisation and Analysis

Transformational System

 accepts some input

 makes some calculations

 returns a result

In particular:

 terminates always (resp. should terminate)

 no user interaction possible
(after the input was accepted)

Ekkart Kindler

33 ATSE (02265), L08: Formalisation and Analysis

Reactive System

 reacts permanently to input

 can output results any time
(dependent on the input)

In particular:

 is interactive (could even be active or proactive)

 does not terminate (normally)

 reactive systems do not „calculate a function“

Ekkart Kindler

34 ATSE (02265), L08: Formalisation and Analysis

Reactive vs. transformational

Information systems are reactive (in most cases)

The classical notions of algorithm and computation are
defined from the transformational system’s point of
view

Reactive systems have transformational components
in most cases

Ekkart Kindler

35 ATSE (02265), L08: Formalisation and Analysis

Model Checking

Model checking is tailored to the verification of

reactive systems

 special notations for „reactive properties“

(temporal logics)

 abstraction from transformational parts

(and often from data)

 appropriate for cyclic behaviour

 but on a high level of abstraction only

Ekkart Kindler

36 ATSE (02265), L08: Formalisation and Analysis

Summary

 Model checking is a

technology for

the fully automatic

verification of

reactive systems

with a finite state space.

Ekkart Kindler

37 ATSE (02265), L08: Formalisation and Analysis

5.2. Main Concepts and Ideas

 Kripke structures (defining the system/model)

 CTL (specifying the properties)

 algorithms (only basic idea)

 complexity

Ekkart Kindler

38 ATSE (02265), L08: Formalisation and Analysis

Systems and Requirements

system

S F Kl
 
eH Jjd
j 

requirements

meets

Ekkart Kindler

39 ATSE (02265), L08: Formalisation and Analysis

Model und Specification

model M

Kripke structure

specification A

AG (a  AF b)

Computation Tree Logic (CTL)

a

a

b

a b

Ekkart Kindler

40 ATSE (02265), L08: Formalisation and Analysis

Kripke Structure

A Kripke structure consists of

 a set of states,

 with distinguished initial states,

 a (total) transition relation

 a labelling of states with a set of

atomic propositions.

and

a

a

b

a b

Ekkart Kindler

41 ATSE (02265), L08: Formalisation and Analysis

Behaviour

The behaviour at a state can be represented as a

computation tree:

a

a

b

a b

Ekkart Kindler

42 ATSE (02265), L08: Formalisation and Analysis

CTL-Formulas

CTL-formulas are inductively defined:

 atomic propositions are CTL-formulas

a, b, ...

 CTL-formulas combined with a Boolean

operator are CTL-formulas

 CTL-formulas combined with temporal

operators are CTL-formulas

.  . , .  . ,  . , ...

EX . , EG . , E[. U .], ...

Ekkart Kindler

43 ATSE (02265), L08: Formalisation and Analysis

Exists neXt: EX p

there exists an (immediate) successor in which p holds

true:

EX p

EX p

EX p EX p

p p

p

p

Ekkart Kindler

44 ATSE (02265), L08: Formalisation and Analysis

Exists Globally: EG p

there exists an infinite path on which p holds in each

state:

EG p

EG p

EG p

EG p

EG p

Ekkart Kindler

45 ATSE (02265), L08: Formalisation and Analysis

Exists Until: E[p U q]

there exists a reachable state in which b holds true,

and up to this state p holds true:

E[p U q]

E[p U q]

E[p U q]

E[p U q] E[p U q]

Ekkart Kindler

46 ATSE (02265), L08: Formalisation and Analysis

Abbreviations

AX p   EX  p

for all immediate successors, p holds true

EF p  E [true U p]

in some reachable state, p holds true

AG p   EF  p

in all reachable states, p holds true

AF p   EG  p

on each path, there exists a state in which p holds

true

Ekkart Kindler

47 ATSE (02265), L08: Formalisation and Analysis

System “meets” formula

A CTL-formula holds for a Kripke structure

if the formula holds in each initial state.

Ekkart Kindler

48 ATSE (02265), L08: Formalisation and Analysis

Example

model M specification p

AG (a  AF b)
a

a

b

a b

How do we prove it?

Ekkart Kindler

49 ATSE (02265), L08: Formalisation and Analysis

Algorithms

For each sub-formula, we inductively calculate the set

of states, in which this sub-formula is true:

 atomic propositions

 temporal operators

 Boolean operators

Ekkart Kindler

50 ATSE (02265), L08: Formalisation and Analysis

„Algorithm“ for EX p

Given:

The set of states in which

p holds: Sp

Wanted:

The set of states in which
EX p holds: SEX p

We also write EX(Sp) for SEX p

Ekkart Kindler

51 ATSE (02265), L08: Formalisation and Analysis

until Si+1 = Si = SE[p U q] until Si+1 = Si

Algorithm for E[p U q]

Given: Sp und Sq

Wanted: SE[p U q]

S0 = 

S1 = Sq  (Sp  EX(S0))

S2 = Sq  (Sp  EX(S1))

Si+1 = Sq  (Sp  EX(Si))

...

Ekkart Kindler

52 ATSE (02265), L08: Formalisation and Analysis

until Si+1 = Si = SEG p until Si+1 = Si

Algorithm for EG p

Given: Sp

Wanted: SEG p

S0 = S

S1 = Sp  EX(S0)

S2 = Sp  EX(S1)

Si+1 = Sp  EX(Si)

...

Ekkart Kindler

53 ATSE (02265), L08: Formalisation and Analysis

Algorithms Summary

CTL model checking ~ marking algorithm + iteration

 EX p

 E[p U q]

 EG p

Ekkart Kindler

54 ATSE (02265), L08: Formalisation and Analysis

Complexity

When implemented in an efficient way, the marking

algorithm for each operator is linear in the number of

states of the system:

 O(| M |  | p |)

size of the

model

size of the

formula

Ekkart Kindler

55 ATSE (02265), L08: Formalisation and Analysis

Complexity

When implemented in an efficient way, the marking

algorithm for each operator is linear in the number of

states of the system:

 O(| M |  | p |)

