
Advanced Topics in 

Software Engineering (02265) 

Ekkart Kindler 



Ekkart Kindler 

2 ATSE (02265), L06: Model Transformations 

Recapitulation TGGs 



Ekkart Kindler 

3 ATSE (02265), L06: Model Transformations 

Grammars 

 Grammar: 

 rules ( + axiom) 

 replacing left-hand side by right-hand side 

 

 Grammars are meta-models 

(for textual modelling notations) 

 

 The two ”uses” of grammars 

 Use 1: defining a language ( parsing, etc.) 

 Use 2: defining behaviour ( Markov algorithms) 

 



Ekkart Kindler 

4 ATSE (02265), L06: Model Transformations 

Graph grammars: Use 1 

Defining the syntax of Petri nets: 

++ 

Rule 1: ++ 

++ 

Rule 2: ++ 

Rule 3: ++ 
++ 

Rule 4: ++ 
++ 

Rule 5: ++ 
++ 



Ekkart Kindler 

5 ATSE (02265), L06: Model Transformations 

Graph grammars: Use 2  

Different representation: single graph, indicating in 

colours (and labels) what does not change, what is 

deleted and what is added: 

t 

-- 

-- 

-- -- 

++ 

++ 

++ 

++ 

++ 

++ 



Ekkart Kindler 

6 ATSE (02265), L06: Model Transformations 

2.3. Triple Graph Grammars (TGGs) 

 Using graph grammars for defining the relation 

between models (in a special way), 

 for transforming them accordingly, and 

 keeping the resulting models consistent. 

 



Ekkart Kindler 

7 ATSE (02265), L06: Model Transformations 

Example: From Project Plan … 

  

c1 

c2 

c3 

c4 

c5 

c7 

c8 

c6 



Ekkart Kindler 

8 ATSE (02265), L06: Model Transformations 

Example: … to Petri Net 

  

c1.track 
c2.track 

c3.track 

c4.track 

c5.track 

c7.track 

c8.track 

c6.trackl 

c6.trackr 



Ekkart Kindler 

9 ATSE (02265), L06: Model Transformations 

Transformations 

  :Project 

:InPort 

:OutPort 

:Track 

:Place 

:Transition 

:Arc 

:Petrinet 



Ekkart Kindler 

10 ATSE (02265), L06: Model Transformations 

Triple Graph Grammar Rule 

  :Project 

:InPort 

:OutPort 

:Track 

:Place 

:Transition 

:Arc 

:Petrinet :Corresp 

:Corresp 

:Corresp 

:Corresp 



Ekkart Kindler 

11 ATSE (02265), L06: Model Transformations 

Transf. of connection 

  



Ekkart Kindler 

12 ATSE (02265), L06: Model Transformations 

TGG-rule: Connection 

  

:OutPort 

:InPort 

:Connection 

:Transition 

:Place 

:Arc :Corresp 

:Corresp 

:Corresp 



Ekkart Kindler 

13 ATSE (02265), L06: Model Transformations 

TGG-Rules in “graphical syntax” 

  



Ekkart Kindler 

14 ATSE (02265), L06: Model Transformations 

Semantics of TGG-Rules 

  



Ekkart Kindler 

15 ATSE (02265), L06: Model Transformations 

“Model-driven Execution” 

  



Ekkart Kindler 

16 ATSE (02265), L06: Model Transformations 

Strength of TGGs 

 Rules are declarative and local 

 

 Semantics works both ways 

 

 

 Yet, the transformations are operational 

(compiler / interpreter approach) 

 

 Transformations are operational both ways! 



Ekkart Kindler 

17 ATSE (02265), L06: Model Transformations 

Corollary of locality 

 Transformations can (in principle) be verified for 

semantical correctness 

 

 Approach works incrementally! 



Ekkart Kindler 

18 ATSE (02265), L06: Model Transformations 

Incremental application 

  



Ekkart Kindler 

19 ATSE (02265), L06: Model Transformations 

TGGs are good for 

 Defining transformations between models that are 

structurally similar 

 

 Executing these transformations (in models of 

reasonable size) 

 

 



Ekkart Kindler 

20 ATSE (02265), L06: Triple Graph Grammars 

Outline 

 Example 

 Semantics 

 Strength 

 Problems and Weaknesses 

 Extensions and Open Issues 



Ekkart Kindler 

21 ATSE (02265), L06: Model Transformations 

Extensions 

 TGG++ 

 Inheritance of rules 

 where-clause 

 other “abbreviations” 

 

 Negation 

 



Ekkart Kindler 

22 ATSE (02265), L06: Triple Graph Grammars 

TGG-Rules in “graphical syntax” 

  



Ekkart Kindler 

23 ATSE (02265), L06: Triple Graph Grammars 

TGG-Rules in “graphical syntax” 

  



Ekkart Kindler 

24 ATSE (02265), L06: Triple Graph Grammars 

Generation Semantics 

  



Ekkart Kindler 

25 ATSE (02265), L06: Triple Graph Grammars 

“Model-driven Semantics” 

  



Ekkart Kindler 

26 ATSE (02265), L06: Triple Graph Grammars 

“Incremental approach” 

  



Ekkart Kindler 

27 ATSE (02265), L06: Model Transformations 

Extensions 

 TGG++ 

 inheritance of rules 

 where-clause 

 other “abbreviations” 

 

 Negation 

 grammar-style semantics 

(not what we want?) 

 model-driven semantics 

(incrementality lost or incompatible) 



Ekkart Kindler 

28 ATSE (02265), L06: Triple Graph Grammars 

Re-usable nodes 

  

straight:type 

strange:type 



Ekkart Kindler 

29 ATSE (02265), L06: Triple Graph Grammars 

Rules? 

  

straight:type 

strange:type 



Ekkart Kindler 

30 ATSE (02265), L06: Triple Graph Grammars 

Rules? 

  

straight:type 

strange:type 



Ekkart Kindler 

31 ATSE (02265), L06: Triple Graph Grammars 

Re-usable nodes (##) 

  

straight:type 

strange:type 



Ekkart Kindler 

32 ATSE (02265), L06: Triple Graph Grammars 

Extensions 

 TGG++ 

 

 Negation 

 

 Re-usable nodes (“grey nodes” / ##) 



Ekkart Kindler 

33 ATSE (02265), L06: Triple Graph Grammars 

Clean definitions 

 Attributes 

 

 Inheritance in graph models 



Ekkart Kindler 

34 ATSE (02265), L06: Triple Graph Grammars 

Rules in with attributes 

  

number=n  

marking=n  



Ekkart Kindler 

35 ATSE (02265), L06: Triple Graph Grammars 

Rules in with attributes 

  

number 

n:integer 

marking 



Ekkart Kindler 

36 ATSE (02265), L06: Triple Graph Grammars 

Attributes: General Concept 

  

number 

n:integer 

marking 

f g 

m:integer 

offset 



Ekkart Kindler 

37 ATSE (02265), L06: Triple Graph Grammars 

Clean definitions 

 Attributes 

 are grey nodes 

 problem: operational interpretation needs inverse 

functions 

 

 Inheritance in graph models 



Ekkart Kindler 

38 ATSE (02265), L06: Triple Graph Grammars 

Inheritance 

  

A 

B 

b:B node:A 

Meta model  Node in a TGG rule 
Model node 

«final» 



Ekkart Kindler 

39 ATSE (02265), L06: Triple Graph Grammars 

Research issues 

 Good examples 

 Benchmarks 

 “Theory” of sufficient conditions for deterministic 

transformations / 

deterministic “partial transformations” 

 Verification techniques 

 Uniform interface / integration of strategies 

 Efficient transformations / synchronisation 

 … 



Ekkart Kindler 

40 ATSE (02265), L06: Triple Graph Grammars 

TGGs: Summary 

 (Often) elegant way of defining the relation between 

two kinds of models 

 Based on this definition, models can be 

 transformed in either direction 

(different approaches: compile rules, interprete rules) 

 corresponding models can be kept consistent 

(synchronization) 

 Good for defining the relation between structurally 

similar models 



Ekkart Kindler 

41 ATSE (02265), L06: Triple Graph Grammars 

TGGs: Literature 

1. A. Schürr. Specification of graph translators with triple graph 

grammars. In E. W. Mayr, G. Schmidt, and G. Tinhofer, 

editors, Graph-Theoretic Concepts in Computer Science, 

20th International Workshop, WG '94, Springer LNCS 903, 

151-163, June 1994. 

 

2. E. Kindler, R. Wagner: Triple Graph Grammars: Concepts, 

Extensions, Implementations, and Application Scenarios. 

Technical Report, Department of Computer Science, 

University of Paderborn, tr-ri-07-284, June 2007. 



Ekkart Kindler 

42 ATSE (02265), L07: Model Transformations 2 

3. Overview and Classification 

 Besides TGGs, there are many other model 
transformation approaches and tools 

 

 

 

 

 

 

 

 with different features, strengths and weaknesses 
and on different technical levels (some of them on 
the border between M2M and M2T) 



Ekkart Kindler 

43 ATSE (02265), L07: Model Transformations 2 

Motivation 

There are many approaches (and we cannot have a 

look into all of them). 

 

Instead, we try to identify the 

 main features, 

 main differences and 

 characteristics  

of transformation technologies 

 



Ekkart Kindler 

44 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 Program vs model  (graph) 

 

 

 Graph vs model 

 on models: which kind of meta-modelling technology: 

 proprietary 

 MOF/XMI 

 MOF/Ecore/XMI/EMF 

 MOF/UML 

 
 

 



Ekkart Kindler 

45 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 horizontal vs vertical 

 horizontal: envolved models are on the same level of 

abstraction 

 vertical: envolved models are on different levels of 

abstraction 

 

 

 
 

 



Ekkart Kindler 

46 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 endogen vs exogen 

 endogen: there is a single meta-model for all involved 

models! (often it ”is” a single model  in-place) 

 

 exogen: there is (or can be) a different meta-model for 

every involved model 

 

 

 
 

 



Ekkart Kindler 

47 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 in-place vs ”out-place” 

 in-place: changes the model itself 

(by definition, this is endogen) 

 

 out-place: works on different models  

 

 
 

 



Ekkart Kindler 

48 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 two models vs multiple models 

 two: there is exactly one source and one target model 

 

 multiple: any number of models can be involved 

 

 

 
 

 



Ekkart Kindler 

49 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 operational vs declarative 

 operational: describes imperatively (algorithmically) in 

which way the target model is constructed from the source 

model 

 

 declarative: defines the relation between two (classes of ) 

models, but not how a respective transformation is done 

 

 

 
 

 



Ekkart Kindler 

50 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 uni-directional vs bi-directional 

 uni-directional: the transformation can be executed in one direction 

only 

 

 

 

 bi-directional (multi-directional): the transformation can be done in 

both directions 

 

 

 

 

 

 synchronisation ( see incremental) 



Ekkart Kindler 

51 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 en-bloc vs incremental 

 en-bloc: a transformation is always done from scratch; the 

complete source model is transformed into a new target 

model every time the transformation is executed 

 

 

 

 

 incremental: changes on a model can be incrementally 

transformed (typically, the relation between the model 

elements is stored permanently) 

 



Ekkart Kindler 

52 ATSE (02265), L07: Model Transformations 2 

Characteristics 

 non-standard vs standard 



Ekkart Kindler 

53 ATSE (02265), L07: Model Transformations 2 

Exercise 

What are the characteristics of 

 TGGs / MGGs 

 JET 

 QVT 



Ekkart Kindler 

54 ATSE (02265), L07: Model Transformations 2 

4. Other approaches 

Query/View/Transformation (QVT) 

 

 is the OMG Standard that comes along with MOF 

 

 its purpose is to support the transformations necessary 

in the MDA 

 is based on several other OMG standards: MOF, OCL 

 

 consists of two major parts: 

 QVT Operational Mappings (operational) 

 QVT Relations (declarative) 

 QVT Core (declarative) 



Ekkart Kindler 

55 ATSE (02265), L07: Model Transformations 2 

Reminder: TGG-Rules 

  



Ekkart Kindler 

56 ATSE (02265), L07: Model Transformations 2 

QVT Relations: Two relations  

pr:Project

track:Track

inPort:Port
type=”In”

outPort:Port
type=”Out”

pn:Petrinet

place:Place

arc:Arc

trans:Transition

<<domain>> <<domain>>
ctools pnet

C E

when ProjectToPetrinet(pr, pn);

pr:Project pn:Petrinet
ctools pnet

C E

top relation TrackToPlaceArcTransition

top relation ProjectToPetrinet

<<domain>> <<domain>>



Ekkart Kindler 

57 ATSE (02265), L07: Model Transformations 2 

QVT Relation: textual 

top relation ProjectToPetrinet { 

 checkonly domain ctools pr : ctools::Project{ 

  name = n 

 }; 

 

 enforce domain pnet pn : pnet::Petrinet { 

  name = n 

 }; 

} 

 



Ekkart Kindler 

58 ATSE (02265), L07: Model Transformations 2 

QVT Relation: textual 

top relation TrackToPlaceArcTransition { 

 checkonly domain ctools track : ctools::Track{ 

  componentToProject = pr : ctools::Project{}, 

  componentToPort = portIn : ctools::Port{ type = 'In' }, 

  componentToPort = portOut : ctools::Port{ type = 'Out' }, 

 }; 

 

 enforce domain pnet arc : pnet::Arc { 

  arcToPetrinet = pn : pnet::Petrinet{}, 

  arcToPlace = place : pnet::Place{ placeToPetrinet = pn }, 

  arcToTransition = trans : pnet::Transition{ 

   transitionToPetrinet = pn 

  } 

 }; 

 

 when { ProjectToPetrinet(pr, pn); } 

} 



Ekkart Kindler 

59 ATSE (02265), L07: Model Transformations 2 

QVT Relational 

Observations 

 variables in QVT correspond to nodes in TGGs 

 assignments to variables correspond to arcs in 
TGGs 

 

 when is similar to the black nodes of TGGs; 
but there are some subtle differences 

 the domain is similar to TGG domains; but in QVT, 
there is one distinguished node indicating the 
domain 

 checkonly and enforce indicate a direction 
(though, in principle, the QVT-rules are independent 
of a transformation direction). 



Ekkart Kindler 

60 ATSE (02265), L07: Model Transformations 2 

QVT Operational Mappings 

 Imperative definition of a transformation from one 

model to another 

 Not bi-directional 

 More efficient 

 Can be combined with QVT Relations 

The example is the “Standard 

example” of QVT, which transforms 

UML packages to a database 

schema! 



Ekkart Kindler 

61 ATSE (02265), L07: Model Transformations 2 

Model definition 

metamodel SimpleUml { 

 abstract class UMLModelElement { 

  kind : String; 

  name : String; } 

 

 class Package extends UMLModelElement { 

  composes elements : PackageElement [*] ordered  
   opposites namespace [1]; } 

 

 abstract class PackageElement extends UMLModelElement 
 {  }  

 

 class Classifier extends PackageElement { 

 } 

 

 class Attribute extends UMLModelElement { 

  references type : Classifier [1]; } 



Ekkart Kindler 

62 ATSE (02265), L07: Model Transformations 2 

Model definition 

 class Class extends Classifier { 

  composes attribute : Attribute [*] 

   ordered opposites owner [1]; 

  references general : Classifier [*] ordered; 

 } 

 

 class Association extends PackageElement { 

  source : Class [1] opposites reverse [*];  

  destination : Class [1] opposites forward [*]; 

 } 

 

 class PrimitiveDataType extends Classifier { 

 } 

}  



Ekkart Kindler 

63 ATSE (02265), L07: Model Transformations 2 

Model definition 

metamodel SimpleRdbms { 

 abstract class RModelElement { 

  kind : String; 

  name : String; } 

 

 class Schema extends RModelElement { 

  composes tables : Table [*] ordered 

   opposites schema [1]; } 

 

 class Table extends RModelElement { 

  composes column : Column [*] ordered 

   opposites owner[1]; 

  composes _key : Key [*] ordered opposites owner[1]; 

   composes foreignKey : ForeignKey [*] ordered  

   opposites owner[1]; } 



Ekkart Kindler 

64 ATSE (02265), L07: Model Transformations 2 

Model definition 

 class Column extends RModelElement { 

  type : String; 

  } 

 

 class Key extends RModelElement {  

  references column : Column [*] ordered 

   opposites _key [*]; 

 } 

 

 class ForeignKey extends RModelElement {  

  references refersTo : Key [1]; 

  references column : Column [*] ordered 

   opposites foreignKey [*]; 

  } 

} 



Ekkart Kindler 

65 ATSE (02265), L07: Model Transformations 2 

QVT Operational Mappings 

transformation Uml2Rdb(in srcModel:UML,out dest:RDBMS); 

 

 intermediate class LeafAttribute { 

  name:String; 

  kind:String; 

  attr:UML::Attribute; }; 

 

 intermediate property UML::Class::leafAttributes : 

  Sequence(LeafAttribute);  

 

 query UML::Association::isPersistent() : Boolean { 

  result = (self.source.kind='persistent' and 

   self.destination.kind='persistent'); } 

 

 main() { 

  srcModel.objects()[Class]->map class2table(); 

  srcModel.objects()[Association]->map asso2table();} 



Ekkart Kindler 

66 ATSE (02265), L07: Model Transformations 2 

QVT Operational Mappings 

mapping Class::class2table () : Table   

 when {self.kind='persistent'; } 

{ init { 

  self.leafAttributes := self.attribute -> 

   map attr2LeafAttrs("","");  

 } 

 population { 

  name := 't_' + self.name; 

  column := self.leafAttributes-> 

   map leafAttr2OrdinaryColumn(""); 

  key_ := object Key { 

      name := 'k_'+ self.name; 

      column := result.column[kind='primary']; 

         }; 

 } 

} ... 

 

OCL-like way to 

select a particular 

element from a 

collection. 



Ekkart Kindler 

67 ATSE (02265), L07: Model Transformations 2 

QVT Operational Mappings 

Observations 

 uni-directional 

 imperative 

 driven by source model 

 programming possible 

 can be combined with QVT relations (and QVT core) 

 



Ekkart Kindler 

68 ATSE (02265), L07: Model Transformations 2 

5. Summary 

 Many different concepts and technologies for 

model transformation 

 different characteristics 

 to date: 

different technologies for different purposes 

necessary 

 

 Missing: Concepts for easy combination of 

transformation / synchronisation mechanisms 



Ekkart Kindler 

69 ATSE (02265), L07: Model Transformations 2 

Discussion: M2M vs M2T 

Is there a difference between M2T and M2M? 

 

1st answer: 

No: Most languages have meta-models and APIs 

for accessing and manipulating them. These are 

called Abstract Syntax Trees (AST). 

 

Then, M2M technologies can be used for M2T 

transformations. Even more, using this API can 

guarantee syntactical corrctness of the result. 



Ekkart Kindler 

70 ATSE (02265), L07: Model Transformations 2 

Discussion: M2M vs M2T 

Is there a difference between M2T and M2M? 

 

2nd answers: 

Yes: Sometime, it is easier to produce text directly; 

using the API is overkill. M2T is just easier to 

handle. 

 Sometimes, there is no strictly fixed syntax, and 

no AST. Then, we need M2T anyway. 



Ekkart Kindler 

71 ATSE (02265), L07: Model Transformations 2 

Recommended reading 

 Eclipse has a nice way of accessing and 

manipulating Java-programs via an API for ASTs. 

 

Have a look at the Eclipse Article / Tutorial on 

Abstract Syntax Trees: 

http://www.eclipse.org/articles/article.php?file=Article-

JavaCodeManipulation_AST/index.html 

 


