=
—
e

i

Advanced Topics In
Software Engineering (02265)

Ekkart Kindler

DTU Compute
Department of Applied Mathematics and Computer Science

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

)
—
e

M

Recapitulation TGGs

ATSE (02265), L06: Model Transformations

/Note that slides 3-41 were
provided for lecture 6 already
and slides 3-19 have been

discussed in lecture 6 already

k(at least briefly).

\

_J

DTU Compute

Grammars

M

= Grammar:
= rules (+ axiom)
= replacing left-hand side by right-hand side

= Grammars are meta-models
(for textual modelling notations)

= The two "uses” of grammars
= Use 1: defining a language (- parsing, etc.)
= Use 2: defining behaviour (= Markov algorithms)

ATSE (02265), L06: Model Transformations

Graph gram)
p g mars. Use 1 qhis graph grammardeﬁnesthe

syntax of Petri nets. It can be
used to generate or parse a

Definin '
g the syntax of Petri nets Gyntactica‘|y correct Petri net.

Rule 1:

Rule 3:

Rule 5:

I

ATSE (02265), L06: Model Transformations

-
-
-
-

-
-
-
-

Iy

Rule 2:

Rule 4:

~
~
~
~
~
4)

purpose of GGs here; the
example should just illustrate

Qhe “Use 1” of GGs.

ﬁNote that this is not the (main)\

_/

4

=
—
=

Graph grammars: Use 2 |57

M

Different representation: single graph, indicating in

colours (and labels) what does not change, what is
deleted and what is

.

Q/JD\Q

rThIS is “Use 2” of \
graph grammars
(defining evolving
kbehawour)

_

ATSE (02265), L06: Model Transformations

DTU Compute

2.3. Triple Graph Grammars (TGGs) |

=
—]
=

M

= Using graph grammars for defining the relation
between models (in a special way),

= for transforming them accordingly, and
= keeping the resulting models consistent.

ATSE (02265), L06: Model Transformations

Example: From Project Plan ... ‘

e

5

-

DTU Compute
epartment ot

=
—
=

M

™

2N

=

e

§

VAN

\ 4
1
d

Eogv

ATSE (02265), L06: Model Transformations

Example o to Petrl Net ‘ Dapartment of Applied Mathematics and Computer Science

=
=

M

C,.track

Cq trackl

Cs.track

C..track
Cq trackr

C:.track

> >©)D/C

c,.track

,.track
Cg.track

ATSE (02265), L06: Model Transformations

=
—]
=

M

‘Petrinet

‘Place

‘Arc

\4

Transformations
:Project
et f
e [e
:OutPort

ATSE (02265), L06: Model Transformations

‘Transition

- DTU Compute DTU
Trl p I e G ra O h G ram m ar R u Ie ‘ I;iiaar:;n;:r):difpplied Mathematics and Computer Science §
:Project :Corresp :Petrinet
.InPort :Corresp :Place

N\
:Track :Corresp :Arc
A4
:OutPort :Corresp :Transition

ATSE (02265), L06: Model Transformations 10

Transf. of connection s

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
=

i

ATSE (02265), L06: Model Transformations

11

TGG-rule: Connection

:OutPort

:Corresp

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e

i

:Connection

:Corresp

‘Transition

‘InPort

:Corresp

ATSE (02265), L06: Model Transformations

‘Place

12

TGG-Rules in “graphical syntax” ‘DTU cnentof

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
—
e

i

ATSE (02265), L06: Model Transformations

13

]
—
e

i DTU conr]“glxr:e Applied Mathematics and Computer Science b4
Semantics of TGG-Rules |5 | 22
e
\ 4
1
o
N e
\ 4
1
o
. N <
g/
D __________________ T . .
-JhlS-ls-Use-1 -of grammars]----
ust for two/three models in
parallel.
ATSE (02265), L06: Model Transformations 14

=
—
=

“ 1 i ” DTU comgugeﬂr‘“m Mathematics and Computer Science
Model-driven Execution” |5 e | 22
N\ — = m = mmmmmmmmm e mm e m oo ———-—sooooSosososooooTe
A4
|
o
N e
¢
I 1
e
. L
A4
I |
T
ATSE (02265), L06: Model Transformations 15

Strength of TGGs i —

=
—
=

M

Rules are declarative and local

Yet, the transformations are operational
(compiler / interpreter approach)

Transformations are operational both ways!

ATSE (02265), L06: Model Transformations 16

=
—
=

Corollary of locality [l

M

Transformations can (in principle) be verified for
semantical correctness

Approach works incrementally!

ATSE (02265), L06: Model Transformations 17

=
—
=

I n C re m e n tal a I i Cati O n BT?ﬂFﬁm’gl{lﬁ Applied Mathematics and Computer Science b4
p p Ekkart Kindler z
N\ — = m = mmmmmmmmm e mm e m oo ———-—sooooSosososooooTe
A4
1
e
N e
A 4
1
e e
ATSE (02265), L06: Model Transformations 18

TGGs are good for |

=
—
=

M

Defining transformations between models that are
structurally similar

Executing these transformations (in models of
reasonable size)

ATSE (02265), L06: Model Transformations 19

=
—
e

O u tI I n e Eéiiir::n:%ﬁc;efefpplied Mathematics and Computer Science §
= Example
= Semantics
= Strength

= Problems and Weaknesses
= Extensions and Open Issues

ATSE (02265), LO6: Triple Graph Grammars

20

Extensions

» TGG++

= |nheritance of rules
= where-clause

= other “abbreviations”

= Negation

DTU Compute DTU
Department of Applied Mathematics and Computer Science b4
Ekkart Kindler >

ATSE (02265), L06: Model Transformations

21

TGG-Rules in “graphical syntax” ‘DTU cnentof

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
—
e

i

ATSE (02265), LO6: Triple Graph Grammars

22

TGG-Rules in “graphical syntax”

ATSE (02265), LO6: Triple Graph Grammars

DTU Compute DTU
Department of Applied Mathematics and Computer Science >
Ekkart Kindler >

23

]
—
e

G e n e rati O n S e m anti CS BTg]ﬁ?mglﬁ Applied Mathematics and Computer Science b4
Ekkart Kindler z
[\ mmmmmmmmmmmmmmmm e m e oo o-——o—oooooosooSSosoooo
A4
1
i T
N e
A 4
1
i T
. N <
A4
1
e
ATSE (02265), LO6: Triple Graph Grammars 24

=
—
=

“ 1 i ” DTU' comgugeﬂr‘“m Mathematics and Computer Science
Model-driven Semantics” | s [22
e L bbb
A4
1
b
. A LR E L EEE LR LR Lt
A 4
1
b
. A Rt anR L EEE LR LR Lt
A4
1
e
ATSE (02265), LO6: Triple Graph Grammars 25

=
—
=

! I t I h 7 BTLJJ ‘Fﬁmmﬁe{ Applied Mathematics and Computer Science >
ncremental approac S ot oo | 55
USRS
\ 4
1
B
N e
\ 4
1
B
. AL <
g/
= f
__ . . ion O
r|\/\ore probIé‘matmD?‘ﬁ;“o
model elements. Bul,
. able.
ATSE (02265), L06: Triple Graph Grammars 1 pﬂﬂc‘p‘e do I

)
—
e

DTU Compute

u
Exte n S I O n S Department of Applied Mathematics and Computer Science
Ekkart Kindler

M

» TGG++

= Inheritance of rules
= where-clause
= other “abbreviations”

= Negation
= grammar-style semantics
(not what we want?)

= model-driven semantics
(incrementality lost or incompatible)

ATSE (02265), L06: Model Transformations 27

Re-usable nodes

straight:type

-

strange:type

<€

O«—11]

DTU Compute
Department of Applied M:

Ekkart Kmdler

M

-]
=
—
=

Q<«—11

ATSE (02265), LO6: Triple Graph Grammars

rNote that this bxample uses a 1
changed meta- -model i
(components refer 10 b
wwne). .

Rules?

DTU Compute DTU
Department of Applied Mathematics and Computer Science >
Ekkart Kindler >

straight:type

strange:type

ATSE (02265), LO6: Triple Graph Grammars

29

Rules?

DTU Compute

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
—_
=

i

straight:type

strange:type I<\/

ATSE (02265), LO6: Triple Graph Grammars

30

DTU Compute
R e - u S a e n O e S (##) Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e

i

straight:typeps ¢ :
Y
— . “ _DT____ ___________
— exist already. o y'r\v‘be\ ———————
if they used; if Nob tney W‘re
re- ’
° ated (since theY eSgGa\
creb\ac we sometim O
(’
2hem grey nodes) ——
strange:typer< l

ATSE (02265), LO6: Triple Graph Grammars

31

Extensions

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
=

M

» TGG++

= Negation

Re-usable nodes (“grey nodes” / ##)

ATSE (02265), LO6: Triple Graph Grammars

32

Clean definitions

= Attributes

Inheritance in graph models

ATSE (02265), LO6: Triple Graph Grammars

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

)
—
e

M

33

Rules in with attributes |57

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
=

i

Omarking:n

number n T

ATSE (02265), LO6: Triple Graph Grammars

34

Rules in with attributes |57

ATSE (02265), L06: Tripl

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e

i

rammars

n:integer

Wing

35

- DTU Compute DTU
Attrl b utes : G e n e ral CO n Ce pt ‘ Iéiiaar:tm;:r):difpplied Mathematics and Computer Science §

n:integer m:integer

number / markin& /éffset

ATSE (02265), L06: Triple Graph Grammars 36

Clean definitions e

=
—
=

M

= Attributes
= are grey nodes

= problem: operational interpretation needs inverse
functions

Inheritance in graph models

ATSE (02265), LO6: Triple Graph Grammars 37

Inheritance

Department of Applied Mathematics and Computer Science

DTU Compute
Ekkart Kindler

)
—
e

M

Meta model Node in a TGG rule
Model node
«final»
A node:A b:B
7 |
a8 2
Does b map 1o node:
B ; | \\/\USt be \
{ know:
—{ oo N

ATSE (02265), L06: Triple Graph Gramr&r\

a node defines, what we want.

> In our tool: the property MatchSubtyp

es of

_J

38

=
—]
=

DTU Compute

Research issues

M

= (Good examples
= Benchmarks

= “Theory” of sufficient conditions for deterministic
transformations /
deterministic “partial transformations”

= Verification technigues
= Uniform interface / integration of strategies
= Efficient transformations / synchronisation

scussed here, are \
nterpreter we
tes are

6 sSome of the concepts di '
not implemented in the TGG | .
use in our tutorial. Values to attribu

assigned via constraints (see examples In

_

r&\ tutorial).
ATSE (02265), LO6: Triple Graph Gram 39

‘ DTU Compute

TGGs: Summary

M

= (Often) elegant way of defining the relation between
two kinds of models

= Based on this definition, models can be

= transformed in either direction
(different approaches: compile rules, interprete rules)

= corresponding models can be kept consistent
(synchronization)

= Good for defining the relation between structurally
similar models

ATSE (02265), LO6: Triple Graph Grammars 40

TGGs: Literature

M

1. A. Schurr. Specification of graph translators with triple graph
grammars. In E. W. Mayr, G. Schmidt, and G. Tinhofer,
editors, Graph-Theoretic Concepts in Computer Science,

20th International Workshop, WG '94, Springer LNCS 903,
151-163, June 1994.

2. E. Kindler, R. Wagner: Triple Graph Grammars: Concepts,
Extensions, Implementations, and Application Scenarios.
Technical Report, Department of Computer Science,
University of Paderborn, tr-ri-07-284, June 2007.

C We did NOT invent TGGs (that was Andy \

gSchirr more than 20 years ago)

> Due to their nice concepts we are enthusiastic

about them anyway and try to promote them.J
41

ATSE (02265), LO6: Triple Graph Gram

3. Overview and Classification

‘ DTU Compute

M

= Besides TGGs, there are many other model
transformation approaches and tools

P\C"G Fujaba
Xsit AL Mg GR
PR o GAT
OG
Ress (W™ GROOVE

= with different features, strengths and weaknesses
and on different technical levels (some of them on
the border between M2M and M2T)

ATSE (02265), LO7: Model Transformations 2 42

=
—]
=

Motivation Exs

M

There are many approaches (and we cannot have a
look into all of them).

~

: : This classification loosely
Instead, we try to identify the follows ideas of van Gorp;

. i, Mens, Varro, and
= main features, Karsa

others
= main differences and K —/
= characteristics

of transformation technologies

(After this overview, we will \
look at one other technology
(QVT); partly as kind of an
«axercise” to apply the

@lassification. J

ATSE (02265), LO7: Model Transformations 2 43

=
=
=

M

‘ DTU Compute

Characteristics

= Program vs model (graph)

This is very close to the
distinction M2T vs M2M.

= Graph vs model
= on models: which kind of meta-modelling technology:

proprietary

MOF/XMI

MOF/Ecore/XMI/EMF /Though not relevant \
MOF/UML from the conceptual

point of view, this. is a
very important criterion
when deciding for a
transformation

Ktechnology (tool). J

ATSE (02265), LO7: Model Transformations 2 44

=
—]
=

DTU Compute

M

Characteristics

= horizontal vs vertical

= horizontal: envolved models are on the same level of
abstraction

= vertical: envolved models are on different levels of
abstraction

Conceptually, a transformationx
technology can be used for

both. But, technologie_s tend to
be better in one than in the

Q)ther. J

ATSE (02265), LO7: Model Transformations 2 45

Characteristics

=
—]
=

M

= endogen vs exogen

= endogen: there is a single meta-model for all involved
models! (often it "is” a single model - in-place)

= exogen: there is (or can be) a different meta-model for
every involved model

ATSE (02265), LO7: Model Transformations 2 46

Characteristics oeprnenics

=
—]
=

M

= In-place vs "out-place”

= in-place: changes the model itself
(by definition, this is endogen)

= out-place: works on different models

rConceptually, an “in-place N
transformation” is not even a
transformation; it is more a
change of a model .itsel-f. But,
by making a copy first, |.t
Q)ecomes a transformation. J

ATSE (02265), LO7: Model Transformations 2

a7

=
—
=

Characteristics s

M

= two models vs multiple models

= two: there Is exactly one source and one target model

= multiple: any nhumber of models can be involved

fConsidered as a transformation, \
more than two models seem to be
3 bit awkward.

But, it makes much sensg, to
Q(eep many models consistent. J

ATSE (02265), LO7: Model Transformations 2 48

=
—]
=

Characteristics s

M

= operational vs declarative

= operational: describes imperatively (algorithmically) in

which way the target model is constructed from the source
model

= declarative: defines the relation between two (classes of)
models, but not how a respective transformation is done

ATSE (02265), LO7: Model Transformations 2 49

Jepartment of Applied Mathematics and Computer Science

Ekkart Kindler

Characteristics

‘ DTU Compute

=
=

M

= uni-directional vs bi-directional

= yni-directional: the transformation can be executed in one direction

I
only — \

This is typical for most
operational approaches.

= bi-directional (multi-directional): the transformation can be done in
both directions

¢)
This is typical for most
declarative approaches.

* synchronisation (= see incremental)

ATSE (02265), LO7: Model Transformations 2

=
—]
=

Characteristics s

M

= en-bloc vs iIncremental

= en-bloc: a transformation is always done from scratch; the

complete source model is transformed into a new target
model every time the transformation is execute

o

' op of

Gften there are additional mechamsm‘z rc:]r;3 ;(‘ tg

en-b\ec transformations, ttlet nz::\%et r?e et
earlier transformation |

Ccrﬁ;nnggs) with the new transformatlon result.)

= incremental: changes on a model can be incrementally

transformed (typically, the relation between the model

elements is stored permanently) /Being incremental and bi-/

mu\ti-directiona\ is the main
prerequisite for model

ksynchronisation- _J
ATSE (02265), LO7: Model Transformations 2 51

Characteristics

= non-standard vs standard

Department
Ekkart Kindler

‘ DTU Compute
Deg

r

this does not play-a ro‘\e. It
industrial applications:

does for

Though conceptually and technically

_J

ATSE (02265), LO7: Model Transformations 2

of Applie

d Mathematics and Computer Science

=
—
=

M

52

- DTU Compute DTU
Exe rC I S e Department of Applied Mathematics and Computer Science b4
Ekkart Kindler >

What are the characteristics of
= TGGs /| MGGs
= JET

= QVT

ATSE (02265), LO7: Model Transformations 2 53

=
—]
=

4. Other approaches

‘ DTU Compute

M

Query/View/Transformation (QVT)

Is the OMG Standard that comes along with MOF

= |tS purpose Is to support the transformations necessary
In the MDA

= |S based on several other OMG standards: MOF, OCL

= consists of two major parts:

= QVT Operational Mappings (operational)
= QVT Relations declgre*>— .
2 (Here, we give a rough . A
= QVT Core (declq | orview on QVT Relation
and QVT Operational by
examp\e only. J
ATSE (02265), LO7: Model Transformations 2 54

Reminder: TGG-Rules

ATSE (02265), LO7: Model Transformations 2

DTU Compute DTU

Department of Applied Mathematics and Computer Science >

Ekkart Kindler >
| |

55

QVT Relations: Two relations

‘ DTU Compute

(' .
QVT Relations N
graphical notation!

top relation ProjectToPetrinet \
—< <domain>>— ctools pnet —< <domain>>—
pr:Project -- --= pn:Petrinet
C E
top relation TrackToPlaceArcTransition
pr:Project — pn:Petrinet

outPort:Port

. ctools pnet
<domain> <C>_>
track:Track C E

trans:Transition

Vi
<<domain>>
/{/ arc:Arc

v

inPort:Port

place:Place

when ProjectToPetrinet(pr, pn); (Trace node (similar to

TGGs correspondence

nodes); exactly one for

ATSE (02265), LO7: Model Transformations each relation)

56

QVT Relation: textual

‘ DTU Compute

=
—]
=

M

top relation ProjectToPetrinet {

checkonly domain ctools pr

name = n

};

enforce domain pnet pn
name = n

};

ATSE (02265), LO7: Model Transformations 2

pnet: :Petrinet {

S7

ctools: :Project{

=
=

QVT Relation: textual |&7

M

domain ctools track : ctools::Track{

ctools: :Project{},
componentToPort = portIn : ctools::Port{ type = 'In' },
componentToPort = portOut : ctools::Port{ type = 'Out' },

};

omain pnet arc : pnet::Arc {

= oPetrinet = pn : pnet::Petrinet{},

arcToPlace = place : pnet::Place{ placeToPetrinet = pn },

arcToTransition = trans : pnet::Transition{
transitionToPetrinet = pn

};

rojectToPetrinet(pr, pn); }

}

ATSE (02265), LO7: Model Transformations 2 58

QVT Relational " Note that there are SOme

subtle but impo_rtant
differences, which we

Observations <annot discuss here!

variables in QVT correspond tonodes in TGGs

assignments to variables correspond to arcs in
TGGs

when IS similar to the black nodes of TGGs:
but there are some subtle differences

the domain Is similar to TGG domains; but in QVT,
there Is one distinguished node indicating the
domain

checkonly and enforce indicate a direction
(though, in principle, the QVT-rules are independent
of a transformation direction).

ATSE (02265), LO7: Model Transformations 2 59

DTU Compute

QVT Operational Mappings |

=
=

M

= |mperative definition of a transformation from one

= Not bi-directional help of an example-

model to another
@y the

Again, just @ rough overviewJ

= More efficient

= Can be combined with QVT Relations

-

The example is the “Standard
example” of QVT, which transforms
UML packages to a database
schema!

_

~N

J

ATSE (02265), LO7: Model Transformations 2

60

Model definition

metamodel SimpleUml ({
abstract class UMLModelElement

kind : String;
name : String; }

class Package extends UMLModelElement ({

composes elements : PackageElement [*] ordered
opposites namespace [1l]; }

abstract class PackageElement extends UMLModelElement
{ }

class Classifier extends PackageElement ({

}

class Attribute extends UMLModelElement ({
references type : Classifier [1]; }

ATSE (02265), LO7: Model Transformations 2 61

DTU Compute

M

Model definition

class Class extends Classifier {
composes attribute : Attribute [*]
ordered opposites owner [1];
references general : Classifier [*] ordered;

class Association extends PackageElement ({
source : Class [l1l] opposites reverse [*];
destination : Class [1l] opposites forward [*];

class PrimitiveDataType extends Classifier ({

}

ATSE (02265), LO7: Model Transformations 2 62

DTU Compute

Model definition

M

metamodel SimpleRdbms {
abstract class RModelElement {
kind : String;
name : String; }

class Schema extends RModelElement {
composes tables : Table [*] ordered
opposites schema [1]; }

class Table extends RModelElement {
composes column : Column [*] ordered
opposites owner[l];
composes key : Key [*] ordered opposites owner[l];
composes foreignKey : ForeignKey [*] ordered
opposites owner|[l]; }

ATSE (02265), LO7: Model Transformations 2 63

Model definition

class Column extends RModelElement ({
type : String;

class Key extends RModelElement {
references column : Column [*] ordered
opposites key [*];

class ForeignKey extends RModelElement {
references refersTo : Key [1];

references column : Column [*] ordered
opposites foreignKey [*];

ATSE (02265), LO7: Model Transformations 2

=
—]
=

M

64

DTU Compute

QVT Operational Mappings | =
transformation Uml2Rdb (in srcModel :UML,out dest:RDBMS) ;
intermediate class LeafAttribute {
name:String;
kind:String; Here comes the ai’tua\
attr:UML: :Attribute; }; transformation par

intermediate property UML: :Class::leafAttributes
Sequence (LeafAttribute) ;

query UML: :Association: :isPersistent() : Boolean {
result = (self.source.kind='persistent' and
self .destination.kind='persistent'); }

main () {
srcModel .objects () [Class]->map class2table() ;
srcModel .objects () [Association] ->map asso2table() ;}

ATSE (02265), LO7: Model Transformations 2 65

DTU Compute

QVT Operational Mappings |

mapping Class::class2table () : Table

=
—]
=

M

when {self.kind='persistent'; }
{ init {
self.leafAttributes := self.attribute ->

map attr2LeafAttrs("","");

}
population ({

/OCL-Iike way to

J

name := 't ' + self.name; select a particular
column := self.leafAttributes-> element from a
map leafAttr20rdinaryColumn("") ; collection.
key := object Key {
name := 'k '+ self.name;
column := result.columnl[kind='primary']:;
};
} details left
oo Some parts and some dé

ATSE (02265), LO7: Model Transformations 2 out.

=
—
=

DTU C 'p

QVT Operational Mappings |-

M

Observations

= uni-directional

= Imperative

= driven by source model

= programming possible

= can be combined with QVT relations (and QVT core)

ATSE (02265), LO7: Model Transformations 2 67

‘ DTU Compute

5. Summary

M

= Many different concepts and technologies for
model transformation

= different characteristics

= t{o date:
different technologies for different purposes

necessary

= Missing: Concepts for easy combination of
transformation / synchronisation mechanisms

ATSE (02265), LO7: Model Transformations 2

68

Discussion: M2M vs M2T |5

M

Is there a difference between M2T and M2M?

1st answer:

No: Most languages have meta-models and APIs
for accessing and manipulating them. These are
called Abstract Syntax Trees (AST).

Then, M2M technologies can be used for M2T
transformations. Even more, using this API can
guarantee syntactical corrctness of the result.

ATSE (02265), LO7: Model Transformations 2 69

=
—]
=

Discussion: M2M vs M2T |5

M

Is there a difference between M2T and M2M?

2nd answers:

Yes: Sometime, It Is easler to produce text directly;

using the API is overkill. M2T Is just easier to
handle.

Sometimes, there is no strictly fixed syntax, and
no AST. Then, we need M2T anyway.

H “"t
Es almost always, the answer 1S

depends’. _J

ATSE (02265), LO7: Model Transformations 2 70

=
—
=

M

= Eclipse has a nice way of accessing and
manipulating Java-programs via an APl for ASTs.

Have a look at the Eclipse Article / Tutorial on
Abstract Syntax Trees:

http://www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation_AST/index.html

ATSE (02265), LO7: Model Transformations 2 71

