=
—
e

i

Advanced Topics In
Software Engineering (02265)

Ekkart Kindler

DTU Informatics
Department of Informatics and Mathematical Modeling

flx+Ax) Z (A—x)f

DTU Informatics

Department of Informatics and Mathematical Modelling
Ekkart Kindler

=
—
e

i

V. (Meta-) Modelling Frameworks

ATSE (02265), L04: Modelling-Frameworks

1. Motivation & Overview Department of Informatics and Mathematical Modelling

DTU Informatics

= With MOF, we have:

Modelling notation (EMOF / CMOF)

Java API (JMI, EMF, etc)

Instance model / reflective interface

Transfer syntax for models and instances (XMl)

= How do we

create meta-models, models, and instances?

use and change model instances?

build editors / viewers for models (and instances)?
keep posted on instance changes?

control / serialise accesses to a model?

formulate and guarantee some additional
consistency requirements?

ATSE (02265), L04: Modelling-Frameworks

=
—]
=

M

Motivation and Overview

Department of Informatics and Mathematical Modelling

‘ DTU Informatics

=
=

M

Modelling frameworks provide thwmnrp\
functionality:

Editors
Editor framworks
Notification mechanisms

In the tutorials, we Us€
EMF / EMFT as a

N

y.

tutorial today (project 1)!

concrete example.
k_'F\nd 2 bit more on GMF in

W

.

Adapter and delegation mechanisms

Commands
Transactions
Validation

ATSE (02265), L04: Modelling-Frameworks

—

This lecture will provide

of the underlying ideas
and concepts.

just an overview of some

N

_J

= Model View Controller ~
= Observer pattern
= Factory

DTU Informatics
aqartment of Informatics

and Mathem

tical Mode

llin

]
—
e

m

> just a glimps
(reminder)

= Delegation D
= Command framework

= Transactions

ATSE (02265), L04: Modelling-Frameworks

Model View Controller (MVC)

‘ DTU Informatics

Department of Informatics and Mathematical Modelling

Ekkart Kindler

=
—
=

M

A

Object

PetriNet M Od EI \

Node |8 Arc

‘I‘} targE—

Qnsition Place k—

ATSE (02265), L04: Modelling-Frameworks

-

_

Controller

:Arc

o]

~

J

I\/I VC ‘ DTU Informatics
Department of Informatics and Mathematical Modelling

M

"\ N

View

MVC patterns may
Representation of model || differ in the exact

and user interaction details!
queries A
/ selects
/ informs on \

changes informs on

! user interactions y
.) s
Model Controller
<€ Makes changes and calls
Domain model and makes changes functions of the model
functions

N J _ Y,

ATSE (02265), L04: Modelling-Frameworks 7

Notification

‘ DTU Informatics
Department of Informa

M

= When different parts of an application can change a
model, the different parts need to know about their
changes

= The model itself can best take care of notifying the

others by implementing the observation pattern (as
subject > next slide)

/The ECNO engine makes \
extensive use of that.

Changes of the underlying
model, will automatically
ible
update the possib
Qnteractions atthe GUI. /

ATSE (02265), L04: Modelling-Frameworks 8

Observer pattern (GoF->)
a8

\

In EMF, all EObjects ”
are/can be “Subjects’.

Subject b

_/

notify(...)

register(Observer 0)
unregister(Observer 0)

observer
N

DTU Informatics

‘ Department of Informatics and Mathematical Modelling

=
—
=

M

Observer

JAN

O..*/

notificatiorx...)

JAY

In EMF, all model A

elements are
kEObjects!

ATSE (02265), L04: Modelling-Frameworks

ConcreteSubject subject ConcreteObserver
<
getState() 0..* notification(...)
setState(...)

n
EMF,
) cific 0

yfication

=
—]
=

GO F — ”Gang Of Fou r” ‘ DTUInfOT‘mme matics and Mathematical Modelling

M

Design Patterns in Software Engineering (*) were
iIntroduced by

Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides:

Design Patterns, Addison Wesley 1995

These four are affectionaly called "The Gang of Four”
(GOF). — R

(*) The idea of using “Deslign |
Patterns” came from architecture:
Christopher Alexander, 1977.

L _/

ATSE (02265), L04: Modelling-Frameworks 10

DTU Informatics

M

Factory

Create objects of a type
= even if type Is an interface
= where the concrete class for object is decided at runtime

= when helpers are needed to decide the right class or to
properly instantiate an the object (in some context)

‘Examples in EMF were briefly)

discussed in the tutorials:

e.g. see PetriNetsFactory.java (or
kPNVisFactory) .

— separation of interfaces from implementation

—> creation of objects can be delegated to the right
Instance

ATSE (02265), L04: Modelling-Frameworks 11

DTU Informatics I
Command Framework—1=== IE
This should not be confused with
the GoF Command pattern.

Problems:

= Make changes on a model / ins%a'nce—smﬁat they can be
easily undone.

= Define the changes belonging to each other.

_/

We need that for different reasons:
= Undo/redo in editors or even a simulation

= |n the context of additional constraints:
It is difficult to forsee, whether a model will be consistent after
some changes are made,
with an undo feature, we can make the change, then check if
the result is consistent, and, if it is not, undo the chanage _

> see also “\/alidation” l
ATSE (02265), L04: Modelling-Frameworks

The editing domain serves

y other purposes-

Command Framework |

man

= For each model / instance, there is an editing domain that
maintains a command stack

= There are factories for creating commands for all the types of

operations:
| create ﬁSee Petri net example fromW
" delete ihe first tutorial for a simple
= add elements kexamp|e-)

= set attributes

and for building more complexe commands.

= The editing domain can also be used as a factory for creating
commands (which will be delegated to the right factory).

n EMF, e.g. the

|
i roviders.
ATSE (02265), LO4: Modelling-Frameworks ltemP

13

Programming commands

‘ DTU Informatics

M

= Programming commands is tedious (not difficult
thorugh);

= a lot of syntax for almost nothing

= This is nothing human programmers would like to do
(see Tutorial 1)

= In some situtations (when using GMF), you can use
Recording commands — basically programming as
usual except for the set up (tutorial 2).

= When changes are made in a GMF editor, and react
to these notifications, you can program this
behaviour since the notifications run inside a
recording command (tutorial 4) already.

ATSE (02265), L04: Modelling-Frameworks 14

‘ DTU Informatics

Recording commands

M

= |[n some situtations (when using GMF), you can use
Recording commands — basically programming as
usual except for the set up (tutorial 2).

= When changes are made in a GMF editor, and react
to these notifications, you can program this
behaviour since the notifications run inside a
recording command (tutorial 4) already.

= The secret behind is a special kind of
EditionDomain: a transactional editing domain.

ATSE (02265), L04: Modelling-Frameworks 15

M

3. OCL (and Validation) | & s ‘

= Many of the requirements of a model cannot be expressed in
EMOF or CMOF (or even UML) alone!
= Validity checks could be implemented as methods, but this

would be dependent on the programmi T :
P Pog and, remember, "we don't J

like programming” ;-)

— OCL (Object Constraint Language) is independent from a
concrete programing language and tuned to formulate typical
constraints on MOF or UML models

— OCL also allows us to formulate pre and post conditions of
methods [See option “body” later]

—> or even to "implement” some methods or derived attributes

—> can be used for validation (at different points of the lifecycle
of a model)

ATSE (02265), L04: Modelling-Frameworks 16

Example (cf. L01)

Defines the context onw

Stands for
<<invariant>>: applies
to all instances of Arc

‘ DTU Informatics
Department of Info

PetriNet
»

context Arc inv:

which this constraint is
applied /I*/

(self.source.oclIsKindOf(Place) and
self.target.oclIsKindOf(Transition))

) or
Object (self.source.oclIsKindOf(Transition)
and
A self.target.oclIsKindOf(Place))
1
No a’e c source A
name: String [<€ rc
_ A 1 target
Petri net
model
Transition Place -0—* Token

ATSE (02265), L04: Modelling-Frameworks

Meta-model for Petri nets

17

OCL basics [—

OCL expressions

= start from the context object
(in OCL called self!)

= may access attributes and methods
(by dot-notation and resp. names)

= may nhavigate along associations
= may call operations and built-in functions

ATSE (02265), L04: Modelling-Frameworks

M

18

OCL contex

DTU Informatics

Jepartment of Informa >

C ‘)) -
g

= The context can be a class /Today, it depends on \

) tool / framework in
(self refers to an instance of that class) which way an

= option inv expression is attached
to a UML model and a

_ text. _/
= The context can be an operation \eon
(self refers to the object on which the operation is called)

= options pre, post and body:
pre and post define a pre- and post-condition w

body defines the result. In post, we can refer _to
values before execution

by the @pre tad _
Cratourl

= The context can be an attribute or
(self refers to the object to which it belongs)

= options init and derived

ATSE (02265), L04: Modelling-Frameworks 19

DTU Informatics

De nforma

File Edit Diagram Mavigate Search Project Run Window Help

»

i 2w 0-@ BEHGI®y- [=Th I | = Plug-in Devel...
| Tahama vig ¥/B I | A- AR Biv G- ge- KN EH B vl & 35 Debug
| [J] Generatesutomatan.ja |=| simpleautomaton, java [J] companentDefinition. fﬁn Warker . class 4 JETautomaton 52 | [J] PetriMetsFactory. jav B DeploymentEditar, gmf % casETaol.ecorediag 53 =8 e
= - =
4 3 Palette JETAutarmaton/plugin, xml o deploymentl ~ -
i [& € o=
fﬁ: R HDe
| (= i —‘Ei = deployment | & name : EStrin
- cornponentdefinition
8 EPackage 1.1
EClass
B [} 1.1
4 EDataTvpe \
a. y
= EEnum
- H Componentinstance
: 1.1
fl= EAnnotation — = L a
H CompaonentDefinition T =S § EString
& EOperation T name : EString definition 1.1 | T type : EString
==} . S
— EAttribute 7 hardware : EBoolean definition }1“1
— EEnumLiteral T *
=51 Details Entry] [] ™™ || HWComponertinstance
ﬂ; 1.1 [component
(= Connections ® 07 |, e —
s EReference H attributeDefinition| 0..* | component
= name : EStrin
g, Inheritance 1.1 | sucomaton N 9| 0.1
5 Automaton = initial : EInt —
== EAnnctation link definition port |0,
; - H BoaiExpression] H PortDefinition part | 0.* .
==} . i N
attrié.u.t; £ name : BSiring IS H Portinstance 1.1 out H oo
- al
0.1 | condition LA part definifor 7 buffersize : Elnt source 0.%
transition | « port 1.1 T type : EString 1.1 in
state [0..* 1.1 |inikial " definition| = |zhel : ESiring ETE G
EEE 1.1 0..# [Transition H Intessage = 1.1
T name : EString target in | = label : EString
2 initial : EBoalean [1..1 0.* _ trigger
|~ 0.1
saurce out —‘
simulation
1.1 current { ' &
out | H outessage
0. H Simu
H CormponentRTInstancelo.* simulatignr—
¢ T name : EString companent
assignment T type : ESiring
o.,.* 0..*% exp
H assignment exp | B dntEynression L] component L] 1.1 i
— 0.* | attribute
H atributeR TInstance 0.
= yalue : EInt [':]ppnrt el
ortRTInstancef————
definiti o type . EString targek L
messagedefinitions T noMsg : Elnt |11
source [
def def 0. " $ tDT Tfrom
1.1 I . 0., 1l b v
< >
: 0° é s QAR BYE
—

ATSE (02265), L04: Modelling-Frameworks 20

DTU Informatics DTU

Example (S E2) ‘DeparimentofInformatlcsaﬂdMathema{ical Modelling §
context HWComponentinstance inv:

self.definition->size() > 0 and \
self.definition.hardware 8

size() > 0 is one way of
checking for non-null value.

_J
—

«_s» sonverts value to a set

q D
We can also check for null with
... .isTypeOf(OclVoid)
q D

ATSE (02265), L04: Modelling-Frameworks 21

DTU Informatics DTU
Exam p e S E 2 e 10 Department of Informatics and Mathematical Modelling “II

& Plug-in Development - dk.dtu.imm.se2e08.casetool/model/CASETool.ecorediag - Eclipse SDK

File Edit Diagram Mavigate Search Project Run window Help

Cl g - 0-Q- EBHG- ®- = Y | 4= Plug-in Devel,., |
— BivoF v o o A V|| v 35 Debug
m GenerateAutomaton. ja = SimpleAutomaton, java m ComponentDefinition. @,Worker.class #{# JETAutomaton m PetriMetsFactory jav = DeploymentEditor ., gmf h CASETool.ecorediag 3 =&
= =
< 2¥ Palette o @ — 1.1 - o=
:E:; NOET=E £ Deployme:: -
fo. || - Objects © deployment 2 name : EString - 1.1 deployment
EPackage 11 deployment
[Eclass Ettributest 1
5 EDataType =
© EErum ‘ 1.1 ‘ deployment deployment
fi= EAnnotation
4 Eoperaton 0..* | component 0..*| node
= Edttribute H Componentinstance £ Node
— EErumLiteral . g o~ name . EStrlnC
(=2 Details Entry ? name ' EStrIng q - =
_ 1.1 | T type : EStrinc
(= Connections £ i = node 1.1 0..* | node
=+ EReference definition ‘
. Inheritance 1.1
= EAnnatation link component
hwcomponent |0..* component | 0.%
£ HWComponentInstang £ SWComponentInstang
0..* | component
bus
s bus |0..*
X £ Bus _
0..* 0.. . D.*
e 0% | Commmuati 5 name : EString -
= Fortlnstance 1.1 out — - (] i . d
— I Connectior ¢ buffersize : EIn]
< buffersize : EIni source 0.* 0.* bus
|7 type @ EStrinc L1 n | ST (L
defwigion | = |abel : EString target 0

—— 1.1 \ Ledl definition 1.1
ATS i v p2

& Plug-in Development - dk.dtu.imm.se2e08B.casetool/model/CASETool.ecorediag - Eclipse SDK.

Do
EaL |

File Edit Diagram Mavigate Search Project Run Window Help

©i%B- 0 EHEGI®

f=ls

DTU Informatics

| == Plug-in Devel. ..

¢ | Tahoma #lg B I A~ = 'gb - of - & - 20N %5 Debug
m Generatedutomaton. ja =] SimpleAutomaton. java m ComponentDefinition. fﬁo Worker.class ¢ JETAutomaton m PetriMetsFactory, jav = DeployrmentEditor. gmf IE_I CASETool.ecorediag 23 =a
° ¢ 5 Palette . EII"I s
H NCCI=E — | definition ﬁt 0, *
g, | & Oblects @ [BoolExpressior / E Po port o
8 EParkage ame : EString -
5 ecless P [PortInstance
o 1. 2 buffersize : EInt
& EDataTyps 0.1 | condition port definifion 2] !
© EEnum transition | o « port 1.1 . i type: ESt”_nE
fi= EAnnatation ; definition| = label : EString
% EOperation 0..* £ Transition = InM £ - 1.1
= Ettribute in = |label : EStrmg
— EEnurlLiteral 0. % trigger
(=21 Details Entry 0 ’
ot] -)
(= Connections £ ’ 'E' simulaticr
=+ EReference
%, Inheritance aut u Outl\ essage
=—a EANNOtation link 0*
a | ComponentRTInstancto. *
’ 5 name :Eméﬁnéﬁng compot
= . R
assignment r type : EString
0.* 0% exp
ment exp |H IntExpressior, cormponent T 1.1
-— o % | atiribute
R 1”1 o
‘] AttributeRTInstancy 0. *
= value : Elni 29
definitions
def \ def Q. * 9.
_ _ ool 1.1 in out :
| MessageDefinition M\ MessageDefinitior 1 .
message : £l Message
- = nanW\: EString ————
0.* N ddf = npame .
v i
£ >
A=l =

==

ATWUU)TEUTI‘VI‘UUUHH =T TaAITTEWUTKS

E I (S E 2 1 O) ‘ DTU Informatics
Xam p e e Department of Informatics and Mathematical Modelling

=
=

M

context Connection Iinv:

self.source.definition.out->forAll(m1 |

self.target.definition._in->exists(m2 | m1=m2))
and

self.target.definition.out->forAll(m1 |
self.source.definition._Iin->exists(m2 | m1=m2))

“in” is a keyword of OCL; therefore the
attribute “in” needs to be accessed via
11 'ln”

—

ATSE (02265), L04: Modelling-Frameworks

for more details on OCL.

|
OCL more detaIIS(See http;//wjﬁwi.c;rnrr\g.Org/spec/OCLIZ.O/PDF/J

= |f an aftribute or association has cardinality less or
equal 1 the reference to that attribute or association
always returns a single value of the respecitive type
(null, If It does not exist)

= |f the cardinality Is greater 1, the reference to it
returns a set (collection) of the respective type

= There are operations to select elements from sets
and to quantify on sets.
1 fy E>iterate(x; res = init | exp(xres)) J

= These set operations are accessed via ->

ATSE (02265), L04: Modelling-Frameworks 25

=
—]
=

M

= OCL has a precisely defined meaning
(independently from a specific programming
language or implementation of the model)

= The way to "hook in” OCL constraints depends on
the used technology
(e.g. EMF Validation Framework)

For an example, s€€ Sect. 4.5.1.4 of the J
ePNK manual.

ATSE (02265), L04: Modelling-Frameworks

26

=
—]
=

O C L O = = ‘ DTU Informatics
pl n I O n Department of Informatics and Mathematical Modelling

M

= OCL looks and feels much like programming with a
flavour of logic

= Programmers are not so used to it, and often get
OCL wrong

= |In most modelling frameworks, it is possible to
formulate constraints in your favourite programming
language

(We will see an example in tutorial 4 J

ATSE (02265), L04: Modelling-Frameworks 27

