
Advanced Topics in

Software Engineering (02265)

Ekkart Kindler

Ekkart Kindler

2 ATSE (02265), L04: Modelling-Frameworks

IV. (Meta-) Modelling Frameworks

Ekkart Kindler

3 ATSE (02265), L04: Modelling-Frameworks

1. Motivation & Overview

 With MOF, we have:

 Modelling notation (EMOF / CMOF)

 Java API (JMI, EMF, etc)

 Instance model / reflective interface

 Transfer syntax for models and instances (XMI)

 How do we

 create meta-models, models, and instances?

 use and change model instances?

 build editors / viewers for models (and instances)?

 keep posted on instance changes?

 control / serialise accesses to a model?

 formulate and guarantee some additional

consistency requirements?

Ekkart Kindler

4 ATSE (02265), L04: Modelling-Frameworks

Motivation and Overview

Modelling frameworks provide this (and more)

functionality:

 Editors

 Editor framworks

 Notification mechanisms

 Adapter and delegation mechanisms

 Commands

 Transactions

 Validation

Ekkart Kindler

5 ATSE (02265), L04: Modelling-Frameworks

2. Architecture

 Model View Controller

 Observer pattern

 Factory

 Delegation

 Command framework

 Transactions

just a glimps

(reminder)

Ekkart Kindler

6 ATSE (02265), L04: Modelling-Frameworks

Model View Controller (MVC)

 Model

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

View

Controller
:Arc

Ekkart Kindler

7 ATSE (02265), L04: Modelling-Frameworks

MVC

Model

Domain model and
functions

View

Representation of model
and user interaction

Controller
Makes changes and calls
functions of the model

queries

informs on
changes

makes changes

selects

informs on
user interactions

Ekkart Kindler

8 ATSE (02265), L04: Modelling-Frameworks

Notification

 When different parts of an application can change a

model, the different parts need to know about their

changes

 The model itself can best take care of notifying the

others by implementing the observation pattern (as

subject next slide)

Ekkart Kindler

9 ATSE (02265), L04: Modelling-Frameworks

Observer pattern (GoF)

observer

ConcreteSubject

0..*

subject

Subject

register(Observer o)
unregister(Observer o)
notify(...)

getState()
setState(...)

Observer

notification(...)

ConcreteObserver

notification(...) 0..*

Ekkart Kindler GoF = ”Gang of Four”

Design Patterns in Software Engineering (*) were

introduced by

Erich Gamma, Richard Helm, Ralph Johnson,

John Vlissides:

Design Patterns, Addison Wesley 1995

These four are affectionaly called ”The Gang of Four”

(GoF).

10 ATSE (02265), L04: Modelling-Frameworks

Ekkart Kindler

11 ATSE (02265), L04: Modelling-Frameworks

Factory

Create objects of a type
 even if type is an interface

 where the concrete class for object is decided at runtime

 when helpers are needed to decide the right class or to
properly instantiate an the object (in some context)

 separation of interfaces from implementation

 creation of objects can be delegated to the right
 instance

Ekkart Kindler

12 ATSE (02265), L04: Modelling-Frameworks

Command Framework

Problems:

 Make changes on a model / instance so that they can be

easily undone.

 Define the changes belonging to each other.

We need that for different reasons:

 Undo/redo in editors or even a simulation

 In the context of additional constraints:

it is difficult to forsee, whether a model will be consistent after

some changes are made;

with an undo feature, we can make the change, then check if

the result is consistent, and, if it is not, undo the change

Ekkart Kindler

13 ATSE (02265), L04: Modelling-Frameworks

Command Framework

 For each model / instance, there is an editing domain that

maintains a command stack

 There are factories for creating commands for all the types of

operations:

 create

 delete

 add elements

 set attributes

 ...

and for building more complexe commands.

 The editing domain can also be used as a factory for creating

commands (which will be delegated to the right factory).

Ekkart Kindler Programming commands

 Programming commands is tedious (not difficult

thorugh);

 a lot of syntax for almost nothing

 This is nothing human programmers would like to do

(see Tutorial 1)

 In some situtations (when using GMF), you can use

Recording commands – basically programming as

usual except for the set up (tutorial 2).

 When changes are made in a GMF editor, and react

to these notifications, you can program this

behaviour since the notifications run inside a

recording command (tutorial 4) already.
14 ATSE (02265), L04: Modelling-Frameworks

Ekkart Kindler Recording commands

 In some situtations (when using GMF), you can use

Recording commands – basically programming as

usual except for the set up (tutorial 2).

 When changes are made in a GMF editor, and react

to these notifications, you can program this

behaviour since the notifications run inside a

recording command (tutorial 4) already.

 The secret behind is a special kind of

EditionDomain: a transactional editing domain.

15 ATSE (02265), L04: Modelling-Frameworks

Ekkart Kindler

16 ATSE (02265), L04: Modelling-Frameworks

3. OCL (and Validation)

 Many of the requirements of a model cannot be expressed in

EMOF or CMOF (or even UML) alone!

 Validity checks could be implemented as methods, but this

would be dependent on the programming language

OCL (Object Constraint Language) is independent from a

concrete programing language and tuned to formulate typical

constraints on MOF or UML models

OCL also allows us to formulate pre and post conditions of

methods

or even to ”implement” some methods or derived attributes

can be used for validation (at different points of the lifecycle

of a model)

See option “body” later

Ekkart Kindler

17 ATSE (02265), L04: Modelling-Frameworks

Model for Petri nets Meta-model for Petri nets

Example (cf. L01)

Petri net
model

Place Transition

1 source

1 target

Arc

*

PetriNet

context Arc inv:
(self.source.oclIsKindOf(Place) and
 self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)
 and
 self.target.oclIsKindOf(Place))

Token
*

Object

Node
name: String

Stands for

<<invariant>>: applies

to all instances of Arc

Ekkart Kindler

18 ATSE (02265), L04: Modelling-Frameworks

OCL basics

OCL expressions

 start from the context object

(in OCL called self!)

 may access attributes and methods

(by dot-notation and resp. names)

 may navigate along associations

 may call operations and built-in functions

Ekkart Kindler

19 ATSE (02265), L04: Modelling-Frameworks

OCL contex

 The context can be a class
(self refers to an instance of that class)

 option inv

 The context can be an operation
(self refers to the object on which the operation is called)

 options pre, post and body:
pre and post define a pre- and post-condition
body defines the result.

 The context can be an attribute or association
 (self refers to the object to which it belongs)

 options init and derived

Ekkart Kindler

20 ATSE (02265), L04: Modelling-Frameworks

Example (SE2 e10)

Ekkart Kindler

21 ATSE (02265), L04: Modelling-Frameworks

Example (SE2)

context HWComponentInstance inv:

self.definition->size() > 0 and

self.definition.hardware

Ekkart Kindler

22 ATSE (02265), L04: Modelling-Frameworks

Example (SE2 e10)

Ekkart Kindler

23 ATSE (02265), L04: Modelling-Frameworks

Example (SE2)

Ekkart Kindler

24 ATSE (02265), L04: Modelling-Frameworks

Example (SE2 e10)

context Connection inv:

self.source.definition.out->forAll(m1 |

 self.target.definition._in->exists(m2 | m1=m2))

 and

self.target.definition.out->forAll(m1 |

 self.source.definition._in->exists(m2 | m1=m2))

Ekkart Kindler

25 ATSE (02265), L04: Modelling-Frameworks

OCL more details

 If an attribute or association has cardinality less or

equal 1 the reference to that attribute or association

always returns a single value of the respecitive type

(null, if it does not exist)

 If the cardinality is greater 1, the reference to it

returns a set (collection) of the respective type

 There are operations to select elements from sets

and to quantify on sets.

 These set operations are accessed via ->

Ekkart Kindler Validation frameworks

 OCL has a precisely defined meaning

(independently from a specific programming

language or implementation of the model)

 The way to ”hook in” OCL constraints depends on

the used technology

(e.g. EMF Validation Framework)

26 ATSE (02265), L04: Modelling-Frameworks

Ekkart Kindler OCL Opinion

 OCL looks and feels much like programming with a

flavour of logic

 Programmers are not so used to it, and often get

OCL wrong

 In most modelling frameworks, it is possible to

formulate constraints in your favourite programming

language

27 ATSE (02265), L04: Modelling-Frameworks

