
Advanced Topics in

Software Engineering (02265)

Ekkart Kindler

Ekkart Kindler

2 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

III. Meta-modelling

Ekkart Kindler

3 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

1. Background / Motivation

Mid / end 90ties:

 CASE (Computer Aided Software Engineering)
modelling tools become more popular

 code generation and round-trip-engineering

 ”UML-like” notations (and others ”Booch”, ”OMG”)

 many dialects, variations, extensions

 Though UML starts prevailing, many other notations are in use
(today called Domain Specific Languages/DSLs)

 Different ways in which code is generated

 Tools programmed manually

 Tools, models, generated code, ... incompatible

 Hinder industrial success

Ekkart Kindler

4 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Approaches

 Standardisation of a single notation: UML

 Standardisation of a transfer format

Still many problems with exchanging models

Need for other modeling notations

 Observation: Basic infrastructure for any CASE tool
is independent from the modeling notation

 CASE tools should be implemented using their
technology

Ekkart Kindler

5 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Outset

M2 Unified Modelling Notation

M1 Model

M0 User data run-time

design-time

modelling

notation

Ekkart Kindler

6 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Re: Example (from L01)

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

target source

:Arc
source target

:Petrinet

:Token

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

1 start

1 end

Association Class

ClassDiagram

* *

:Class :Class

:Association

:Association

…

…

Ekkart Kindler

7 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Outset

M2 Unified Modelling Notation

M1 Model

M0 User data

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

1 start

1 end

Association Class

ClassDiagram

* *

= conforms to / is instance of

Ekkart Kindler

8 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Meta Object Facility (MOF)

M3 MOF notation

M2 Any modelling notation

M1 Model

M0 User data run-time

design-time

modelling

notation

= conforms to / is instance of

meta-modelling

notation

Ekkart Kindler

9 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Discussion

 Is that any good?

 There is one level that we did not have before!

So, this seems to be more complicated!

 If UML can be defined in terms of itself, why should

we define it in terms of something else?

Ekkart Kindler

10 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

3. The Meta Object Facility

M3 MOF notation

M2 Any modelling notation

M1 Model

M0 User data

= conforms to / is instance of

Ekkart Kindler

11 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Meaning of ”Meta-”

Meta (from Greek: μετά = "after", "beyond", "with", "adjacent", "self"), is a
prefix used in English in order to indicate a concept which is an abstraction
from another concept, used to complete or add to the latter.

In epistemology, the prefix meta- is used to mean about (its own category).
For example, metadata are data about data, something about something
(who has produced them, when, what format the data are in and so on).
Similarly, metamemory in psychology means an individual's knowledge
about whether or not they would remember something if they concentrated
on recalling it. Furthermore, metaemotion in psychology means an
individual's emotion about his/her own basic emotion, or somebody else's
basic emotion.

Another, slightly different interpretation of this term is "about" but not "on"
(exactly its own category). For example, in linguistics a grammar is
considered as being expressed in a metalanguage, or a sort of language for
describing another language (and not itself). A meta-answer is not a real
answer but a reply, such as: "this is not a good question", "I suggest you ask
your professor". Here, we have such concepts as meta-reasoning and meta-
knowledge.
…

From: http://en.wikipedia.org/wiki/Meta

Ekkart Kindler

12 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Meaning of meta

Co-notations and meaning in Software Engineering:

 beyond, ”one level higher”

 possibly self-referential

(with all the problems of self-referentiality)

Often also:

 a UML model

 a class diagram

Ekkart Kindler

13 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

3.1. EMOF model

EMOF Types

type

Element

NamedElement

TypedElement

name: String [0..1]

Type
0..1

Comment

ownedComment

annotatedElement

0..1

0..*

body: String 0..*

Ekkart Kindler

14 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

EMOF Classes

ownedAttribute

TypedElement

Property
isReadOnly: Boolean = false
default: String [0..1]
isComposite: Boolean = false
isDerived: Boolean = false
isID: Boolean

Class

isAbstract: Boolean = false

Type

{ordered}
0..1

MultiplicityElement
isOrdered: Boolean = false
isUnique: Boolean = true
lower: Integer = 1
upper: UnlimitedNatural = 1

class

0..1 0..*

opposite

0..*

superClass

ownedOperation

{ordered}

class

0..1 0..*

Operation

Ekkart Kindler

15 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

EMOF Classes (cntd.)

Additional constraints (e.g.):

 opposite properties are properly paired

 no cycles in inheritance structure

 an object can be contained in at most one container

Ekkart Kindler

16 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

EMOF Classes (cntd.)

TypedElement

0..1

ownedParameter

{ordered}

operation

0..*

0..*

Operation

MultiplicityElement

Parameter

TypedElement MultiplicityElement

Type
raisedException

0..*

Constraint: raisedException must actually be Class

Ekkart Kindler

17 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

EMOF Data Types

Type

PrimitiveType

DataType

Enumeration Enumeration
Literal

ownedLiteral

{ordered}

enumeration

0..1 0..*

NamedElement

Ekkart Kindler

18 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

EMOF Primitive Types

 Boolean

 String

 Integer

 UnlimitedNatural (* for ”infinity”)

Ekkart Kindler

19 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

EMOF Packages

ownedType

Package

uri: String

NamedElement

package

0..1 0..*

0..*

nestingPackage

nestedPackage

Type

0..1

Ekkart Kindler

20 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

EMOF Discussion

 Can EMOF be defined with its own concepts?

 Is it expessible enough?

 What is missing (as compared to UML diagrams)?

 How does EMOF relate to ECore

(the model underlying EMF)?

 Can UML be expressed in it?

 Any other problems?

Ekkart Kindler

21 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

3.2 Reflection capability

 Creating models and their instances (resp. meta-

models and their conforming models) dynamically

 Navigating between model elements and instance

By navigation between different meta-levels in an

arbitrary way, MOF is not restricted to a fixed

number of levels.

Ekkart Kindler

22 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Reflection package

package

NamedElement Factory
createFromString(d:DataType,s:String):Object
convertToString(d:DataType,o:Object):String
create(mc:Class):Element

Package

1

0..1

Object

Element
getMetaClass():Class
container():Element
equals(el:Object):Boolean
get(prop:Property):Object
set(prop:Property,val:Object)
isSet(prop:Property):Boolean

unset(prop:Property)

Type

isInstance(o:Object):Boolean

For properties with more than one value, there exist ReflexiveCollection and

ReflexiveSequence (similar to Java Collections)!

Ekkart Kindler

23 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

3.3 Complete MOF

 As discussed, EMOF lacks some features:

 Associations (only by paired properties, and only binary)

 Visibilities

 Subsetting and redefing properties

 ...

 In the following, we indicate how some of these

features are captured in CMOF

 Like EMOF, CMOF can be defined in terms of its

own concepts (or in terms of EMOF)

Ekkart Kindler

24 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

UML Core::Constructs

Ekkart Kindler

25 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

UML Core::Constructs

Ekkart Kindler

26 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

CMOF

 Reflection similar to EMOF (a bit more complex)

 explicit creation of Links (see next slides)

 invocation of operations

 instanceOf can check class hierarchy (instance of

subclasses)

Ekkart Kindler

27 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Abstract Semantics

 ”Semantic domain model” introduces the concepts

for the instances of a model and

 how the reflection capabilities behave on the model

Ekkart Kindler

28 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

CMOF instance model

Ekkart Kindler

29 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

4. XMI

 Mapping MOF-models and its instances to XML

in a standard way

 A MOF model is mapped to an XMLSchema for its

instances

 XMI is a standard associated with MOF

=>You can easily exchange MOF models

=>Once you agree on the MOF-model, you can

exchange instances of that model

Ekkart Kindler

30 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Example: EMOF model

<?xml version="1.0" encoding="UTF-8"?>

<emof:Package xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:emof="http://schema.omg.org/spec/MOF/2.0/emof.xml" xmi:id="PetriNets"

 name="PetriNets" uri="APetriNetEditorIn15Minutes">

 <ownedType xmi:type="emof:Class" xmi:id="PetriNets.PetriNet" name="PetriNet">

 <ownedAttribute xmi:id="PetriNets.PetriNet.object" name="object"
 isOrdered="true"

 lower="0" upper="*" type="PetriNets.Object" isComposite="true"/>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Object" name="Object"
 isAbstract="true"/>

 <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Node" name="Node"

 isAbstract="true„ superClass="PetriNets.Object">

 <ownedAttribute xmi:id="PetriNets.Node.name" name="name" isOrdered="true"

 lower="0">

 <type xmi:type="emof:PrimitiveType"

 href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String"/>

 </ownedAttribute>

 <ownedAttribute xmi:id="PetriNets.Node.in" name="in" isOrdered="true"

 lower="0" upper="*" type="PetriNets.Arc"
 opposite="PetriNets.Arc.target"/>

 <ownedAttribute xmi:id="PetriNets.Node.out" name="out" isOrdered="true"
 lower="0" upper="*" type="PetriNets.Arc"
 opposite="PetriNets.Arc.source"/>

 </ownedType>

Ekkart Kindler

31 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Example (cntd.)

 <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Arc" name="Arc"
 superClass="PetriNets.Object">

 <ownedAttribute xmi:id="PetriNets.Arc.source" name="source"
isOrdered="true"

 type="PetriNets.Node" opposite="PetriNets.Node.out"/>

 <ownedAttribute xmi:id="PetriNets.Arc.target" name="target"
isOrdered="true"
 type="PetriNets.Node" opposite="PetriNets.Node.in"/>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Transition"
 name="Transition" superClass="PetriNets.Node"/>

 <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Place"
 name="Place" superClass="PetriNets.Node">

 <ownedAttribute xmi:id="PetriNets.Place.token" name="token"
 isOrdered="true" lower="0" upper="*„
 type="PetriNets.Token" isComposite="true"/>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Token"
 name="Token"/>

 <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">

 <nsPrefix>APetriNetEditorIn15Minutes</nsPrefix>

 </xmi:Extension>

</emof:Package>

Ekkart Kindler

32 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

XMI instance

<?xml version="1.0" encoding="UTF-8"?>

<APetriNetEditorIn15Minutes:PetriNet xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:APetriNetEditorIn15Minutes="APetriNetEditorIn15Minutes">

 <object xsi:type="APetriNetEditorIn15Minutes:Transition" name="t1"
 in="//@object.7" out="//@object.4"/>

 <object xsi:type="APetriNetEditorIn15Minutes:Transition" name="t2"
 in="//@object.5" out="//@object.6"/>

 <object xsi:type="APetriNetEditorIn15Minutes:Place" name="p1"
 in="//@object.6" out="//@object.7">

 <token/>

 </object>

 <object xsi:type="APetriNetEditorIn15Minutes:Place" name="p2"
 in="//@object.4" out="//@object.5"/>

 <object xsi:type="APetriNetEditorIn15Minutes:Arc"
 source="//@object.0" target="//@object.3"/>

 <object xsi:type="APetriNetEditorIn15Minutes:Arc"
 source="//@object.3" target="//@object.1"/>

 <object xsi:type="APetriNetEditorIn15Minutes:Arc"
 source="//@object.1" target="//@object.2"/>

 <object xsi:type="APetriNetEditorIn15Minutes:Arc"
 source="//@object.2" target="//@object.0"/>

</APetriNetEditorIn15Minutes:PetriNet>

Ekkart Kindler

33 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

5. MOF to Java

 MOF models can also be mapped to a programming

language with an API

 The Java Metadata Interface (JMI) is a standard

mapping to Java

 The mapping of EMF models to Java is another one

(not compatible with JMI)

Ekkart Kindler

34 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

6. Summary

M3

M2 Any modelling notation

M1 Model

M0 User data

= conforms to / is instance of

EMOF CMOF

?

Ekkart Kindler

35 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Discussion

 Why EMOF and CMOF?

 Relation between UML infrastructure and MOF

 Relation between EMOF and ECore (EMF)

Ekkart Kindler

36 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Relation to SE2

M3 ECore

M2 ePNK / SE2 CASE Tool

M1 Model

M0 User data

= conforms to / is instance of

Ekkart Kindler

37 Advanced Topics in Software Engineering (02265), L03: Meta-modelling

Overview

See: http://www2.imm.dtu.dk/~pk/images/meta-levels.pdf (thanks to Patrick)

http://www2.imm.dtu.dk/%7Epk/images/meta-levels.pdf
http://www2.imm.dtu.dk/%7Epk/images/meta-levels.pdf
http://www2.imm.dtu.dk/%7Epk/images/meta-levels.pdf

