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1. Background / Motivation  

Mid / end 90ties: 

 CASE (Computer Aided Software Engineering) 
modelling tools become more popular 

 code generation and round-trip-engineering 

 ”UML-like” notations (and others ”Booch”, ”OMG”) 

 many dialects, variations, extensions 

 

 Though UML starts prevailing, many other notations are in use 
(today called Domain Specific Languages/DSLs) 

 

 Different ways in which code is generated 

 

 Tools programmed manually 

 

 Tools, models, generated code, ... incompatible 

 Hinder industrial success 
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Approaches 

 Standardisation  of a single notation: UML 

 

 Standardisation of a transfer format 

 

Still many problems with exchanging models 

Need for other modeling notations 

 

 Observation: Basic infrastructure for any CASE tool 
is independent from the modeling notation 

 CASE tools should be implemented using their 
technology 
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Re: Example (from L01) 
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Outset 
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Meta Object Facility (MOF) 
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Discussion 

 Is that any good? 

 There is one level that we did not have before! 

So, this seems to be more complicated! 

 If UML can be defined in terms of itself, why should 

we define it in terms of something else? 
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3. The Meta Object Facility  

  

M3 MOF notation 

M2 Any modelling notation 

M1 Model 

M0 User data 

=  conforms to / is instance of 



Ekkart Kindler 

11 Advanced Topics in Software Engineering (02265), L03: Meta-modelling 

Meaning of ”Meta-” 

Meta (from Greek: μετά = "after", "beyond", "with", "adjacent", "self"), is a 
prefix used in English in order to indicate a concept which is an abstraction 
from another concept, used to complete or add to the latter. 

In epistemology, the prefix meta- is used to mean about (its own category). 
For example, metadata are data about data, something about something 
(who has produced them, when, what format the data are in and so on). 
Similarly, metamemory in psychology means an individual's knowledge 
about whether or not they would remember something if they concentrated 
on recalling it. Furthermore, metaemotion in psychology means an 
individual's emotion about his/her own basic emotion, or somebody else's 
basic emotion. 

Another, slightly different interpretation of this term is "about" but not "on" 
(exactly its own category). For example, in linguistics a grammar is 
considered as being expressed in a metalanguage, or a sort of language for 
describing another language (and not itself). A meta-answer is not a real 
answer but a reply, such as: "this is not a good question", "I suggest you ask 
your professor". Here, we have such concepts as meta-reasoning and meta-
knowledge. 
… 

From: http://en.wikipedia.org/wiki/Meta 
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Meaning of meta 

Co-notations and meaning in Software Engineering: 

 beyond, ”one level higher” 

 possibly self-referential 

(with all the problems of self-referentiality) 

 

 

 

Often also: 

 a UML model 

 a class diagram 
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3.1. EMOF model 

EMOF Types 

type 

Element 

NamedElement 

TypedElement 

name: String [0..1] 

Type 
0..1 

Comment 

ownedComment 

annotatedElement 

0..1 

0..* 

body: String 0..* 
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EMOF Classes 

  

ownedAttribute 

TypedElement 

Property 
isReadOnly: Boolean = false 
default: String [0..1] 
isComposite: Boolean = false 
isDerived: Boolean = false 
isID: Boolean 

Class 

isAbstract: Boolean = false 

Type 

{ordered} 
0..1 

MultiplicityElement 
isOrdered: Boolean = false 
isUnique: Boolean = true 
lower: Integer = 1 
upper: UnlimitedNatural = 1 

class 

0..1 0..* 

opposite 

0..* 

superClass 

ownedOperation 

{ordered} 

class 

0..1 0..* 

Operation 
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EMOF Classes (cntd.) 

Additional constraints (e.g.): 

 opposite properties are properly paired 

 no cycles in inheritance structure 

 an object can be contained in at most one container 
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EMOF Classes (cntd.) 

  

TypedElement 

0..1 

ownedParameter 

{ordered} 

operation 

0..* 

0..* 

Operation 

MultiplicityElement 

Parameter 

TypedElement MultiplicityElement 

Type 
raisedException 

0..* 

Constraint: raisedException must actually be Class 
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EMOF Data Types 

  

Type 

PrimitiveType 

DataType 

Enumeration Enumeration 
Literal 

ownedLiteral 

{ordered} 

enumeration 

0..1 0..* 

NamedElement 
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EMOF Primitive Types 

 Boolean 

 String 

 Integer 

 UnlimitedNatural (* for ”infinity”) 
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EMOF Packages 

  

ownedType 

Package 

uri: String 

NamedElement 

package 

0..1 0..* 

0..* 

nestingPackage 

nestedPackage 

Type 

0..1 
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EMOF Discussion 

 Can EMOF be defined with its own concepts? 

 

 Is it expessible enough? 

 

 What is missing (as compared to UML diagrams)? 

 

 How does EMOF relate to ECore 

(the model underlying EMF)? 

 

 Can UML be expressed in it? 

 

 Any other problems? 
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3.2 Reflection capability 

 Creating models and their instances (resp. meta-

models and their conforming models) dynamically 

 

 Navigating between model elements and instance 

 

By navigation between different meta-levels in an 

arbitrary way, MOF is not restricted to a fixed 

number of levels. 
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Reflection package 

  

package 

NamedElement Factory 
createFromString(d:DataType,s:String):Object 
convertToString(d:DataType,o:Object):String 
create(mc:Class):Element 

Package 

1 

0..1 

Object 

Element 
getMetaClass():Class 
container():Element 
equals(el:Object):Boolean 
get(prop:Property):Object 
set(prop:Property,val:Object) 
isSet(prop:Property):Boolean 

unset(prop:Property) 

Type 

isInstance(o:Object):Boolean 

For properties with more than one value, there exist ReflexiveCollection and 

ReflexiveSequence (similar to Java Collections)! 
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3.3 Complete MOF 

 As discussed, EMOF lacks some features: 

 Associations (only by paired properties, and only binary) 

 Visibilities 

 Subsetting and  redefing properties 

 ... 

 

 In the following, we indicate how some of these 

features are captured in CMOF 

 

 Like EMOF, CMOF can be defined in terms of its 

own concepts (or in terms of EMOF) 
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UML Core::Constructs 
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UML Core::Constructs 
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CMOF  

 Reflection similar to EMOF (a bit more complex) 

 explicit creation of Links (see next slides) 

 invocation of operations 

 instanceOf can check class hierarchy (instance of 

subclasses) 
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Abstract Semantics 

 ”Semantic domain model” introduces the concepts 

for the instances of a model and 

 how the reflection capabilities behave on the model 
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CMOF instance model 
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4. XMI 

 Mapping MOF-models and its instances to XML 

in a standard way 

 A MOF model is mapped to an XMLSchema for its 

instances 

 XMI is a standard associated with MOF 

 

=>You can easily exchange MOF models 

=>Once you agree on the MOF-model, you can 

exchange instances of that model 
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Example: EMOF model 

<?xml version="1.0" encoding="UTF-8"?> 

<emof:Package xmi:version="2.0" 

    xmlns:xmi="http://www.omg.org/XMI"   
 xmlns:emof="http://schema.omg.org/spec/MOF/2.0/emof.xml" xmi:id="PetriNets" 

    name="PetriNets" uri="APetriNetEditorIn15Minutes"> 

  <ownedType xmi:type="emof:Class" xmi:id="PetriNets.PetriNet" name="PetriNet"> 

    <ownedAttribute xmi:id="PetriNets.PetriNet.object" name="object"  
     isOrdered="true" 

        lower="0" upper="*" type="PetriNets.Object" isComposite="true"/> 

  </ownedType> 

  <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Object" name="Object"    
   isAbstract="true"/> 

  <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Node" name="Node"  

      isAbstract="true„ superClass="PetriNets.Object"> 

    <ownedAttribute xmi:id="PetriNets.Node.name" name="name" isOrdered="true"  

        lower="0"> 

      <type xmi:type="emof:PrimitiveType"  

          href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String"/> 

    </ownedAttribute> 

    <ownedAttribute xmi:id="PetriNets.Node.in" name="in" isOrdered="true"  

        lower="0" upper="*" type="PetriNets.Arc"  
     opposite="PetriNets.Arc.target"/> 

    <ownedAttribute xmi:id="PetriNets.Node.out" name="out" isOrdered="true"  
     lower="0" upper="*" type="PetriNets.Arc"  
     opposite="PetriNets.Arc.source"/> 

  </ownedType> 
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Example (cntd.) 

     <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Arc" name="Arc"  
     superClass="PetriNets.Object"> 

    <ownedAttribute xmi:id="PetriNets.Arc.source" name="source" 
isOrdered="true"  

        type="PetriNets.Node" opposite="PetriNets.Node.out"/> 

    <ownedAttribute xmi:id="PetriNets.Arc.target" name="target" 
isOrdered="true"  
     type="PetriNets.Node" opposite="PetriNets.Node.in"/> 

  </ownedType> 

  <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Transition"  
   name="Transition" superClass="PetriNets.Node"/> 

  <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Place"  
   name="Place" superClass="PetriNets.Node"> 

    <ownedAttribute xmi:id="PetriNets.Place.token" name="token"  
     isOrdered="true" lower="0" upper="*„ 
     type="PetriNets.Token" isComposite="true"/> 

  </ownedType> 

  <ownedType xmi:type="emof:Class" xmi:id="PetriNets.Token"  
   name="Token"/> 

  <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore"> 

    <nsPrefix>APetriNetEditorIn15Minutes</nsPrefix> 

  </xmi:Extension> 

</emof:Package> 
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XMI instance 

<?xml version="1.0" encoding="UTF-8"?> 

<APetriNetEditorIn15Minutes:PetriNet xmi:version="2.0" 
xmlns:xmi="http://www.omg.org/XMI" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:APetriNetEditorIn15Minutes="APetriNetEditorIn15Minutes"> 

  <object xsi:type="APetriNetEditorIn15Minutes:Transition" name="t1"  
  in="//@object.7" out="//@object.4"/> 

  <object xsi:type="APetriNetEditorIn15Minutes:Transition" name="t2"  
  in="//@object.5" out="//@object.6"/> 

  <object xsi:type="APetriNetEditorIn15Minutes:Place" name="p1"  
  in="//@object.6" out="//@object.7"> 

    <token/> 

  </object> 

  <object xsi:type="APetriNetEditorIn15Minutes:Place" name="p2"  
  in="//@object.4" out="//@object.5"/> 

  <object xsi:type="APetriNetEditorIn15Minutes:Arc"  
  source="//@object.0" target="//@object.3"/> 

  <object xsi:type="APetriNetEditorIn15Minutes:Arc"  
  source="//@object.3" target="//@object.1"/> 

  <object xsi:type="APetriNetEditorIn15Minutes:Arc"  
  source="//@object.1" target="//@object.2"/> 

  <object xsi:type="APetriNetEditorIn15Minutes:Arc"  
  source="//@object.2" target="//@object.0"/> 

</APetriNetEditorIn15Minutes:PetriNet> 
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5. MOF to Java 

 MOF models can also be mapped to a programming 

language with an API 

 

 The Java Metadata Interface (JMI) is a standard 

mapping to Java 

 

 The mapping of EMF models to Java is another one 

(not compatible with JMI) 
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6. Summary  

  

M3 

M2 Any modelling notation 

M1 Model 

M0 User data 

=  conforms to / is instance of 

EMOF CMOF 

? 
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Discussion 

 Why EMOF and CMOF? 

 Relation between UML infrastructure and MOF 

 Relation between EMOF and ECore (EMF) 
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Relation to SE2  

  

M3 ECore 

M2 ePNK / SE2 CASE Tool 

M1 Model 

M0 User data 

=  conforms to / is instance of 
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Overview 

  

See: http://www2.imm.dtu.dk/~pk/images/meta-levels.pdf (thanks to Patrick) 

http://www2.imm.dtu.dk/%7Epk/images/meta-levels.pdf
http://www2.imm.dtu.dk/%7Epk/images/meta-levels.pdf
http://www2.imm.dtu.dk/%7Epk/images/meta-levels.pdf

