
 1

Project definition – Project 1: Generate Java Code
Jesper Kristensen s062397, Philip Back s062398, Group D, March 27, 2009

The main task of this project is to take a model of a system created with the SE2 CASE tool and to

generate Java code, which implements the system created by the CASE tool user.

Context
The CASE tool from SE2 is a piece of software, in which a user can model and simulate an

embedded system of software and hardware. First the user of the CASE tool models the capabilities

and behavior of each individual software and hardware component which is called a component

definition. Then the user of the CASE tool connects the individual components to each other which

is called a deployment, and then the user of the CASE tool can simulate his system and analyze the

simulation.

Our project builds on top of the model which is used by the CASE tool, and in this project

description we assume knowledge of the CASE tool model. However we don’t assume knowledge

of any other parts of the CASE tool, such as its editors.

Our project
We have the CASE tool where systems are stored in a model, which can store any system supported

by the CASE tool. We want to generate Java code which should be specialized to run only one

given system. The generated code should not only implement a static model of the system. The

generated code should also allow the system to be executed. We will use the JET technology to

generate Java code from the CASE tool model. Finally an example system should be created, and

some form of GUI should be created to interact with the generated code from the example system.

Example
We will describe our project using an example of a vending machine, which can take coins and

return candy whenever enough coins are inserted. This example is a model which could be given as

input to our tool. Our example system looks like the following:

Figure 1: CoinSlot Figure 2: CandyTray

 2

Figure 3: VendingMachine

Figure 4: VendingMachineSystem

Our system consists of a software component in figure 3, which keeps track of how much money is

inserted into the machine and delivers a candy bar when enough money is inserted. The hardware

component in figure 1 allows the user of the vending machine to insert coins. In this model inserting

a coin is done by modifying the “val” attribute to the coin’s value and changing the state to s2. The

hardware component in figure 2 takes care of actually delivering the candy bars. Figure 4 shows

how the three components are connected over a bus.

Generating code for a component
For each component definition used in the deployment from which code is generated, the generated

code should contain a Java class which implements that component definition. The Java class

corresponds to the component definition from the CASE tool model, and each instance of this Java

class corresponds to a component runtime instance from the CASE tool model.

Such a Java class for figure 3 could look like this:
public class VendingMachine {

Each class representing a component definition should have some fields. There should be one field

for each port in the component definition. These fields should reference objects, which represents

the ports (these objects are described later).

Example for figure 3:
 private final Port money;

 private final Port candy;

 3

There should also be fields in the Java class for each attribute definition in the CASE tool model (in

this text “attribute” always refers to the concept of an attribute from the CASE tool model). The

value of each of these fields should be the value of the component’s attribute during execution (the

AttributeRTInstance from the CASE tool model). Each attribute field is initialized to the initial

value of the attribute.

Example for figure 3:
 private int amount = 0;

The last field required is a reference to the component’s current state in the execution. To have that,

a list of possible states for the component definition is also required. Thus each component

definition should have an enum of all states within its automaton. The “current state” field is

initialized to the initial state of the component.

Example for figure 3:
 public enum States {

 s1

 }

 private States currentState = States.s1;

The Java class representing a component definition should also have a step() method, which

implements the component definition’s automaton so that it acts in the same way as the simulation

algorithm from SE2. (More on that later)

Example for figure 3 (details explained later):
 public void step() {

 switch (currentState) {

 case s1:

 // Trying: money.InsertCoin(value) && value+amount < 20 /

 // amount:=amount+value

 if (money.getFirstMessage() instanceof InsertCoin) { // Trigger

 InsertCoin message = (InsertCoin) money.getFirstMessage();

 if (message.getValue() + amount < 20) { // Condition

 money.removeFirstMessage(); // Trigger

 amount = amount + message.getValue(); // Assignment

 return;

 }

 }

 // Trying: money.InsertCoin(value) && value+amount>=20 /

 // candy.ReturnCandyBar() && amount:=amount+value-20

 if (money.getFirstMessage() instanceof InsertCoin) { // Trigger

 InsertCoin message = (InsertCoin) money.getFirstMessage();

 if (message.getValue() + amount >= 20) { // Condition

 money.removeFirstMessage(); // Trigger

 candy.sendMessage(new ReturnCandyBar()); // Out

 amount = amount + message.getValue() - 20; // Assignment

 return;

 }

 }

 break;

 }

 }

 4

As seen in this example, the step method switches over the current state. For the current state it

checks each of the outgoing transitions for that state to see if it can be used. When it finds a usable

transition, it executes the transition and returns.

Ports do not differ significantly from each other, so they do not need to have a generated Java class

each. Only one such class needs to be developed, from which all ports can be instantiated.

Example:
public class Port {

The component definition should also contain information on which other components an instance

of it is connected to, when such an instance is created within a deployment. This information will be

stored in the Port Java class, as it is the ports which are connected to other ports.

Example from the Port class:
 private class Connection {

 private Port target;

 private Bus bus;

 }

 private final Collection<Connection> connectedTo =

 new ArrayList<Connection>();

The Java class representing a port should also contain the input buffer for the massages received

through that port.

Example from the Port class:
 private final ArrayBlockingQueue<Message> inputBuffer;

As part of the deployment, busses are needed. The busses of a deployment do not differ

significantly from each other, so they do not need to have a generated Java class each. Only one

such class needs to be developed, from which all busses can be instantiated. Each bus should

contain a buffer for messages sent over that bus.

Example:
public class Bus {

 private class MessageAndPort {

 private final Message message;

 private Port port;

 ...

 }

 private final ArrayBlockingQueue<MessageAndPort> buffer;

 Bus(int buffersize) {

 buffer = new ArrayBlockingQueue<MessageAndPort>(buffersize);

 }

 ...

 public void step() {

 MessageAndPort map = buffer.poll();

 if (map != null)

 map.port.addMessage(map.message);

 }

}

 5

Generating code for a deployment
We then need to generate a Java class from the deployment in the CASE tool model. This class

represents the deployment, and each instance of this class represents an execution of the given

deployment.

Example for figure 4:
public class VendingMachineSystem {

The Java class needs to have fields for each bus in the deployment and for each component in the

deployment. When initializing these fields, the buffer sizes of the ports and busses are given.

Example for figure 4:
 private final Bus bus1 = new Bus(10);

 private final CoinSlot coinSlot = new CoinSlot(new Port(1));

 private final VendingMachine vendingMachine =

 new VendingMachine(new Port(14), new Port(1));

 private final CandyTray candyTray = new CandyTray(new Port(5));

Our generated Java class should not have fields for the connections between ports in the

deployment. Instead the generated Java class’ constructor should set up the connections between the

ports for the components within the deployment.

Example for figure 4:
 public VendingMachineSystem() {

 connectPorts(coinSlot.getMoney(), vendingMachine.getMoney(), bus1);

 connectPorts(candyTray.getCandy(), vendingMachine.getCandy(), bus1);

 }

 private void connectPorts(Port p1, Port p2, Bus bus) {

 p1.connectTo(p2, bus);

 p2.connectTo(p1, bus);

 }

Just like the component definition class, the deployment class also needs a step() method for

running the execution of an instance of the deployment.

Example for figure 4:
 public void step() {

 bus1.step();

 coinSlot.step();

 vendingMachine.step();

 candyTray.step();

 }

 6

Generating code for an automaton
The automaton for each component definition is implemented in the step method in the component

class.

First we do a switch over the current state of the component.

Example for figure 3:
 switch (currentState) {

 case s1:

 ...

 break;

 }

When the component is in a given state, we go through each outgoing transition and determine if it

can be used. If we execute a transition, we return from the step method. If we cannot execute a

transition, we continue to the next outgoing transition for the current state until there are no more

outgoing transitions for that state.

First we check if the trigger for the transition applies.

Example for figure 3:
 if (money.getFirstMessage() instanceof InsertCoin) { // Trigger

 InsertCoin message = (InsertCoin) money.getFirstMessage();

If the trigger applies, we get the message and then evaluates the condition:

Example for figure 3:
 if (message.getValue() + amount >= 20) { // Condition

If the condition is also true, we execute the transition and return.

Example for figure 3:
 money.removeFirstMessage(); // Trigger

 candy.sendMessage(new ReturnCandyBar()); // Out

 amount = amount + message.getValue() - 20; // Assignment

 return;
 }

 }

When a transition is executed, relevant messages are sent and attributes are assigned their new

values.

In the above example code we called sendMessage. This method is implemented in the Port class,

and its purpose is to make sure that all ports connected to the given port receive the message. This is

done in the following way:
 public void sendMessage(Message message) {

 for (Connection connection : connectedTo) {

 if (connection.bus == null)

 connection.target.addMessage(message);

 else

 connection.bus.addMessage(connection.target, message);

 }

 }

 7

Example GUI
This describes the code which this project should allow to be generated from the CASE tool model.

We should then create an example model and generate code from that example using our tool. We

should also create a sample GUI, which can interact with the generated code from our example

model. The user should be able to start/stop/pause the execution, see the simulation unfold on the

screen, and manually change the state of a component or add a message to the system. The GUI is

not required to be able to interact with any other system than our chosen example.

Summary
We have given an example of a system which could be created using the CASE tool. Our project is

to take this system and create the Java code, which we have also shown parts of. The complete Java

code which should be created for this particular example is shown below. In our project we will use

the JET technology to transform the model from the CASE tool into Java code. We will also

provide a GUI for one example of a system generated using our tool.

Complete example
The complete code for our example is shown below. We have not included getters which are needed

by the GUI. These getters should of course also be added to the generated code.

Bus.java
import java.util.concurrent.ArrayBlockingQueue;

// Not generated class

public class Bus {

 private class MessageAndPort {

 private final Message message;

 private Port port;

 private MessageAndPort(Message message, Port port) {

 this.message = message;

 this.port = port;

 }

 }

 private final ArrayBlockingQueue<MessageAndPort> buffer;

 Bus(int buffersize) {

 buffer = new ArrayBlockingQueue<MessageAndPort>(buffersize);

 }

 public void addMessage(Port port, Message message) {

 buffer.add(new MessageAndPort(message, port));

 }

 public void step() {

 MessageAndPort map = buffer.poll();

 if (map != null) {

 map.port.addMessage(map.message);

 }

 8

 }

}

CandyTray.java
public class CandyTray {

 public enum States {

 s1

 }

 private final Port candy;

 private States currentState = States.s1;

 CandyTray(Port candy) {

 this.candy = candy;

 }

 public void step() {

 switch (currentState) {

 case s1:

 // Trying: candy.ReturnCandyBar() / give a candy bar

 if (getCandy().getFirstMessage() instanceof ReturnCandyBar) { //

Trigger

 ReturnCandyBar message = (ReturnCandyBar)

getCandy().getFirstMessage(); // Trigger

 // No condition

 getCandy().removeFirstMessage(); // Trigger

 // give a candy bar

 return;

 }

 }

 }

 public Port getCandy() {

 return candy;

 }

}

CoinSlot.java
public class CoinSlot {

 public enum States {

 s1, s2

 }

 private final Port money;

 private int amount = 0;

 private States currentState = States.s1;

 CoinSlot(Port money) {

 this.money = money;

 }

 public void step() {

 9

 switch (currentState) {

 case s1:

 // No transitions can be taken

 break;

 case s2:

 // Trying: / money.InsertCoin(val)

 // no trigger

 // no condition

 getMoney().sendMessage(new InsertCoin(amount)); // Out

 return;

 }

 }

 public Port getMoney() {

 return money;

 }

 public void changeCurrentState(States newState) {

 currentState = newState;

 }

}

 InsertCoin.java
public class InsertCoin extends Message {

 private final int value;

 public InsertCoin(int value) {

 this.value = value;

 }

 public int getValue() {

 return value;

 }

}

Message.java
// Not generated class

public abstract class Message {

}

Port.java
import java.util.ArrayList;

import java.util.Collection;

import java.util.concurrent.ArrayBlockingQueue;

// Not generated class

public class Port {

 private class Connection {

 private Port target;

 private Bus bus;

 public Connection(Port target, Bus bus) {

 this.target = target;

 this.bus = bus;

 }

 }

 10

 private final ArrayBlockingQueue<Message> inputBuffer;

 private final Collection<Connection> connectedTo = new

ArrayList<Connection>();

 Port(int buffersize) {

 inputBuffer = new ArrayBlockingQueue<Message>(buffersize);

 }

 public void sendMessage(Message message) {

 for (Connection connection : connectedTo) {

 if (connection.bus == null)

 connection.target.addMessage(message);

 else

 connection.bus.addMessage(connection.target, message);

 }

 }

 void addMessage(Message message) {

 inputBuffer.add(message);

 }

 public Message getFirstMessage() {

 return inputBuffer.peek();

 }

 public void removeFirstMessage() {

 inputBuffer.remove();

 }

 public void connectTo(Port target, Bus bus) {

 connectedTo.add(new Connection(target, bus));

 }

}

ReturnCandyBar.java
public class ReturnCandyBar extends Message {

}

VendingMachine.java
public class VendingMachine {

 public enum States {

 s1

 }

 private final Port money;

 private final Port candy;

 private int amount = 0;

 private States currentState = States.s1;

 VendingMachine(Port money, Port candy) {

 this.money = money;

 this.candy = candy;

 }

 11

 public void step() {

 switch (currentState) {

 case s1:

 // Trying: money.InsertCoin(value) && value+amount < 20 /

 // amount:=amount+value

 if (money.getFirstMessage() instanceof InsertCoin) { // Trigger

 InsertCoin message = (InsertCoin) money.getFirstMessage(); //

Trigger

 if (message.getValue() + amount < 20) { // Condition

 money.removeFirstMessage(); // Trigger

 amount = amount + message.getValue(); // Assignment

 return;

 }

 }

 // Trying: money.InsertCoin(value) && value+amount>=20 /

 // candy.ReturnCandyBar() && amount:=amount+value-20

 if (money.getFirstMessage() instanceof InsertCoin) { // Trigger

 InsertCoin message = (InsertCoin) money.getFirstMessage(); //

Trigger

 if (message.getValue() + amount >= 20) { // Condition

 money.removeFirstMessage(); // Trigger

 candy.sendMessage(new ReturnCandyBar()); // Out

 amount = amount + message.getValue() - 20; // Assignment

 return;

 }

 }

 break;

 }

 }

 public Port getMoney() {

 return money;

 }

 public Port getCandy() {

 return candy;

 }

}

VendingMachineSystem.java
public class VendingMachineSystem {

 private final Bus bus1 = new Bus(10);

 private final CoinSlot coinSlot = new CoinSlot(new Port(1));

 private final VendingMachine vendingMachine = new VendingMachine(new

Port(14), new Port(1));

 private final CandyTray candyTray = new CandyTray(new Port(5));

 public VendingMachineSystem() {

 connectPorts(coinSlot.getMoney(), vendingMachine.getMoney(), bus1);

 connectPorts(candyTray.getCandy(), vendingMachine.getCandy(), bus1);

 }

 private void connectPorts(Port p1, Port p2, Bus bus) {

 p1.connectTo(p2, bus);

 p2.connectTo(p1, bus);

 }

 public void step() {

 12

 bus1.step();

 coinSlot.step();

 vendingMachine.step();

 candyTray.step();

 }

}

