
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

Ekkart KindlerDimensions

2SE2 (02162 e20), L10

what how

rough

detailed

formal

informal

Ekkart KindlerExample documents

 Product objective
 Product use
 Use cases
 User story
 Domain model
 Code (implementation)
 Test
 Prototype
 GUI definition
 GUI mockup
 ...

 Design
 Architecture
 Data base schema
 XML Schema
 OOA
 OOD
 Systems specification
 Requirements

specification
 Formal model
 Handbook

3SE2 (02162 e20), L10

II. Agile Development

Ekkart Kindler1. Motivation

Conceive
Design
Implement
Operate

5SE2 (02162 e20), L10

How

Why
What

Ekkart KindlerCo-evolution

HOWWHAT

6SE2 (02162 e20), L10

“What” should
the software
do?

“How” is it
realized?

Ekkart Kindler

7SE2 (02162 e20), L10

Driving a car

One cannot steer a
standing car !

Ekkart KindlerGall’s law

“A complex system that works is invariably found to
have evolved from a simple system that worked. A
complex system designed from scratch never works
and cannot be patched up to make it work. You have
to start over with a working simple system.”

John Gall: Systemantics: An essay on how systems
work, and especially how they fail. General
Systemantics Press, Ann Arbor, Michigan, 1975.

8SE2 (02162 e20), L10

Ekkart KindlerMain message

Experience shows (for complex systems):
 CDIO does not work purely sequentially
 Once we have implemented a system (how),

we get a (much) better understanding of
what the system should do!

 Software developments is very much about
managing risk

 Development process needs adjustments
while we are going

 Agile Software Development
9SE2 (02162 e20), L10

Ekkart KindlerAgile manifesto

„We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:
 Individuals and interactions over processes and

tools
 Working software over comprehensive

documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value
the items on the left more.“
Kent Beck et al. 2001

10SE2 (02162 e20), L10

Ekkart Kindler2. Background

 Four variables of software development
 Cost of change

Agile development
 Values
 Principles
 Basic activities

11SE2 (02162 e20), L10

Ekkart KindlerVariables

Four variables of software development process
 Cost
 Time
 Quality
 Scope

12SE2 (02162 e20), L10

Ekkart KindlerNote

 There is no way the customer could pick all four
variables

 Even three variable are not fully independent
 More developers do not necessarily speed up the

process (and not in a linear way)

 Agile helps adjusting these variables dynamically
(and get the most value for the customer):
 Short iterations
 More practise in estimating user stories (developers)
 Prioritization of user user stories (customer)

13SE2 (02162 e20), L10

Ekkart KindlerCost of change

14SE2 (02162 e20), L10

Cost

Ekkart KindlerCost of change

15SE2 (02162 e20), L10

Cost

Time

Ekkart KindlerAgile Values

 Communication

 Simplicity

 Feedback

 Courage

16SE2 (02162 e20), L10

HOWWHAT

Ekkart KindlerAgile Principles

 Values give some orientation and criteria for a
successful agile development

 But, values are too vague for defining concrete
practices

 Therefore, agile builds on principles

17SE2 (02162 e20), L10

Ekkart KindlerFundamental Principals

 Rapid feedback

 Assume Simplicity

 Incremental change

 Embracing change

 Quality work

18SE2 (02162 e20), L10

Ekkart KindlerOther principles

 Teach learning
 Small initial investment
 Play to win
 Concrete experiments
 Open, honest communication
 Work with people’s instincts, not against them
 Accepted responsibilities
 Local adaptation
 Travel light
 Honest measurements

19SE2 (02162 e20), L10

Ekkart KindlerActivities

 Coding
 Testing
 Listening
 Designing

20SE2 (02162 e20), L10

Ekkart Kindler3. Agile Practices (overview)

 On-site customer
 Small/short releases 2-3 week
 Planning game

21SE2 (02162 e20), L10

Ekkart KindlerAgile Practices

 Coding standards
 Testing
 Continuous integration

22SE2 (02162 e20), L10

Ekkart KindlerAgile Practices

 Pair programming
 Simple design
 Refactoring

23SE2 (02162 e20), L10

Ekkart KindlerAgile practices

 Metaphors:
Simple story (and terminology) how the system
should work; speak in simple pictures

 Collective ownership:
Anyone can change, anyone has obligation to
change (if value increases)

 40-hour week,

24SE2 (02162 e20), L10

Ekkart KindlerSynergy of Practices

 The different practices support each other
 One practice’s weakness is the others strength
 You cannot pick/chose practices arbitrarily

25SE2 (02162 e20), L10

Ekkart KindlerExample

Short Releases would be impractical, unless
 Planning Game helps identifyng the user stories

with most value
 Coninuous Integration allows deploying its with

minimal effort
 Testing would guarante low (or desired) defect rate
 Simple Design allows you what is needed now

26SE2 (02162 e20), L10

Ekkart Kindler4. Details

 Planning Game
 Testing

 Organizing facilities

27SE2 (02162 e20), L10

Ekkart KindlerPair programming

is NOT
 one person programming, another only watching
 one peson typing
 a tutoring session for the other person
 always pairing up with the same person
 programming with the buddy you best get along with

28SE2 (02162 e20), L10

Ekkart KindlerPair programming

is
 communication and interaction
 getting a second opinion
 critically reviewing the others work
 correctness
 simplicity
 avoid tunnel view

 learing from each other
 dynamic

29SE2 (02162 e20), L10

If you are not an expert,
ask one to join you for
the task at hand

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in
 Everybody is responsible for fixing broken code

(code which results in failed tests)

30SE2 (02162 e20), L10

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it (tests first)

31SE2 (02162 e20), L10

This helps with becoming clear of
what should be implemented and
how exactly the interface should
be!
Raises level of detail and makes
things technical

See lecture 8: Test Driven
Development

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in

32SE2 (02162 e20), L10

Indicator of quality all the time!

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in
 Everybody is responsible for fixing broken code

(code which results in failed tests)

33SE2 (02162 e20), L10

100% success rate (for unit tests)
is the norm!

Ekkart KindlerTesting

Two sources of tests:
 Programmers:

Unit tests for everything which potentially or likely
could be wrong (or which went wrong at a some
time)

 Customers (maybe implemented by programmer):
Functional tests for user stories

34SE2 (02162 e20), L10

Ekkart KindlerBusiness/Development

In agile,
 business drives decisions,
 which are informed by development (implications,

cost risk)

Too much power for either business or development:
too much effort and risk for too little value

35SE2 (02162 e20), L10

Developers work on the
impossible and with
hardly understood risks
and implications!

Too much focus on
technology instead of
business value

Ekkart KindlerOrganizing Facilities

 Group work and group / meeting:
 Arrangement of tables
 Use projectors and blackboards
 Make status of current user stories and tasks visible
 Show metrics (tests, completion status)

 Be clear about: Are you having a group discussion
or are you working individually (in pairs)

 Make sure everybody knows what their tasks are
until the next meeting

36SE2 (02162 e20), L10

Ekkart KindlerDevelopment Strategy

Continuous Integration:
 All coded is integrated within hours
 In a release all tests run 100%
 If a unit test fails, there is nothing more important

than fixing it

37SE2 (02162 e20), L10

Ekkart KindlerDevelopment Strategy

Collective Ownership:
 Complicated code will not survive for long
 Feeling of influence and responsibility on project
 Spreads knowledge of the system

(together with pair programming)

38SE2 (02162 e20), L10

Ekkart KindlerDevelopment Strategy

Pair Programming:
 Increases communication
 understand what you are doing

 (Positive) controlling
 Spreads knowledge of the system

(together with collective ownership)

39SE2 (02162 e20), L10

Ekkart KindlerDesign Strategy

In agile,
 do not design for things that might be useful

only later
 keep things as simple as possible

(for what you need now)
 refactor when need will be

40SE2 (02162 e20), L10

Driven by all four
values of agile

Ekkart KindlerSimplicity heuristics

 ”Code and tests communicate everything you want it
to communicate”

 No duplicate code

 Fewest possible classes
 Fewest possible methods

41SE2 (02162 e20), L10

This includes comments.
Don’t forget reasonable
“JavaDocs” in your code!

Ekkart KindlerDesign Strategy

In agile,
 design and architecture models (graphical

representation of codes design and architecture)
are used for discussion only and are not saved,

 design and architecture will evolve anyway

42SE2 (02162 e20), L10

Ekkart KindlerRoles

 Programmer
 Customer

 Tester
 Tracker

43SE2 (02162 e20), L10

All team members are writing tests. But the
testers are responsible for running the (non-
automated) tests on a regular basis – and
post the test results
 Testing

Keeps track of history (estimates, test) and
helps people to reflect on them
 Monitoring and controlling

Ekkart KindlerRoles

 Programmer
 Customer

 Tester
 Tracker

 Coach
 Consultant

 Big Boss

44SE2 (02162 e20), L10

helps team improving the process, the
practices, design, …

has deep technical knowledge (or is able to
work it out)

conveys courage, confidence and a bit of
insistance

Ekkart Kindler80:20 Rule (Pareto principle)

80% of the effect comes from 20% of the cause

In Software Engineering:
 20% of the features give you 80% of the value
 80% of the users use only 20% of the features
 80% of the code done in 20% of the time

 80% of the bugs found in 20% of the code

45SE2 (02162 e20), L10

In turn, the 20% of the remaining code needs
80% of the time! Therefore estimations, often,
are wrong!

It might be slightly of
90:10, 70:30, but we call
it 80:20 anyway

	Software Engineering 2�A practical course in software engineering
	Dimensions
	Example documents
	II. Agile Development
	1. Motivation
	Co-evolution
	Driving a car
	Gall’s law
	Main message
	Agile manifesto
	2. Background
	Variables
	Note
	Cost of change
	Cost of change
	Agile Values
	Agile Principles
	Fundamental Principals
	Other principles
	Activities
	3. Agile Practices (overview)
	Agile Practices
	Agile Practices
	Agile practices
	Synergy of Practices
	Example
	4. Details
	Pair programming
	Pair programming
	Agile Test Strategy
	Agile Test Strategy
	Agile Test Strategy
	Agile Test Strategy
	Testing
	Business/Development
	Organizing Facilities
	Development Strategy
	Development Strategy
	Development Strategy
	Design Strategy
	Simplicity heuristics
	Design Strategy
	Roles
	Roles
	80:20 Rule (Pareto principle)

