
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

Ekkart KindlerDimensions

2SE2 (02162 e20), L10

what how

rough

detailed

formal

informal

Ekkart KindlerExample documents

 Product objective
 Product use
 Use cases
 User story
 Domain model
 Code (implementation)
 Test
 Prototype
 GUI definition
 GUI mockup
 ...

 Design
 Architecture
 Data base schema
 XML Schema
 OOA
 OOD
 Systems specification
 Requirements

specification
 Formal model
 Handbook

3SE2 (02162 e20), L10

II. Agile Development

Ekkart Kindler1. Motivation

Conceive
Design
Implement
Operate

5SE2 (02162 e20), L10

How

Why
What

Ekkart KindlerCo-evolution

HOWWHAT

6SE2 (02162 e20), L10

“What” should
the software
do?

“How” is it
realized?

Ekkart Kindler

7SE2 (02162 e20), L10

Driving a car

One cannot steer a
standing car !

Ekkart KindlerGall’s law

“A complex system that works is invariably found to
have evolved from a simple system that worked. A
complex system designed from scratch never works
and cannot be patched up to make it work. You have
to start over with a working simple system.”

John Gall: Systemantics: An essay on how systems
work, and especially how they fail. General
Systemantics Press, Ann Arbor, Michigan, 1975.

8SE2 (02162 e20), L10

Ekkart KindlerMain message

Experience shows (for complex systems):
 CDIO does not work purely sequentially
 Once we have implemented a system (how),

we get a (much) better understanding of
what the system should do!

 Software developments is very much about
managing risk

 Development process needs adjustments
while we are going

 Agile Software Development
9SE2 (02162 e20), L10

Ekkart KindlerAgile manifesto

„We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:
 Individuals and interactions over processes and

tools
 Working software over comprehensive

documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value
the items on the left more.“
Kent Beck et al. 2001

10SE2 (02162 e20), L10

Ekkart Kindler2. Background

 Four variables of software development
 Cost of change

Agile development
 Values
 Principles
 Basic activities

11SE2 (02162 e20), L10

Ekkart KindlerVariables

Four variables of software development process
 Cost
 Time
 Quality
 Scope

12SE2 (02162 e20), L10

Ekkart KindlerNote

 There is no way the customer could pick all four
variables

 Even three variable are not fully independent
 More developers do not necessarily speed up the

process (and not in a linear way)

 Agile helps adjusting these variables dynamically
(and get the most value for the customer):
 Short iterations
 More practise in estimating user stories (developers)
 Prioritization of user user stories (customer)

13SE2 (02162 e20), L10

Ekkart KindlerCost of change

14SE2 (02162 e20), L10

Cost

Ekkart KindlerCost of change

15SE2 (02162 e20), L10

Cost

Time

Ekkart KindlerAgile Values

 Communication

 Simplicity

 Feedback

 Courage

16SE2 (02162 e20), L10

HOWWHAT

Ekkart KindlerAgile Principles

 Values give some orientation and criteria for a
successful agile development

 But, values are too vague for defining concrete
practices

 Therefore, agile builds on principles

17SE2 (02162 e20), L10

Ekkart KindlerFundamental Principals

 Rapid feedback

 Assume Simplicity

 Incremental change

 Embracing change

 Quality work

18SE2 (02162 e20), L10

Ekkart KindlerOther principles

 Teach learning
 Small initial investment
 Play to win
 Concrete experiments
 Open, honest communication
 Work with people’s instincts, not against them
 Accepted responsibilities
 Local adaptation
 Travel light
 Honest measurements

19SE2 (02162 e20), L10

Ekkart KindlerActivities

 Coding
 Testing
 Listening
 Designing

20SE2 (02162 e20), L10

Ekkart Kindler3. Agile Practices (overview)

 On-site customer
 Small/short releases 2-3 week
 Planning game

21SE2 (02162 e20), L10

Ekkart KindlerAgile Practices

 Coding standards
 Testing
 Continuous integration

22SE2 (02162 e20), L10

Ekkart KindlerAgile Practices

 Pair programming
 Simple design
 Refactoring

23SE2 (02162 e20), L10

Ekkart KindlerAgile practices

 Metaphors:
Simple story (and terminology) how the system
should work; speak in simple pictures

 Collective ownership:
Anyone can change, anyone has obligation to
change (if value increases)

 40-hour week,

24SE2 (02162 e20), L10

Ekkart KindlerSynergy of Practices

 The different practices support each other
 One practice’s weakness is the others strength
 You cannot pick/chose practices arbitrarily

25SE2 (02162 e20), L10

Ekkart KindlerExample

Short Releases would be impractical, unless
 Planning Game helps identifyng the user stories

with most value
 Coninuous Integration allows deploying its with

minimal effort
 Testing would guarante low (or desired) defect rate
 Simple Design allows you what is needed now

26SE2 (02162 e20), L10

Ekkart Kindler4. Details

 Planning Game
 Testing

 Organizing facilities

27SE2 (02162 e20), L10

Ekkart KindlerPair programming

is NOT
 one person programming, another only watching
 one peson typing
 a tutoring session for the other person
 always pairing up with the same person
 programming with the buddy you best get along with

28SE2 (02162 e20), L10

Ekkart KindlerPair programming

is
 communication and interaction
 getting a second opinion
 critically reviewing the others work
 correctness
 simplicity
 avoid tunnel view

 learing from each other
 dynamic

29SE2 (02162 e20), L10

If you are not an expert,
ask one to join you for
the task at hand

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in
 Everybody is responsible for fixing broken code

(code which results in failed tests)

30SE2 (02162 e20), L10

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it (tests first)

31SE2 (02162 e20), L10

This helps with becoming clear of
what should be implemented and
how exactly the interface should
be!
Raises level of detail and makes
things technical

See lecture 8: Test Driven
Development

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in

32SE2 (02162 e20), L10

Indicator of quality all the time!

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in
 Everybody is responsible for fixing broken code

(code which results in failed tests)

33SE2 (02162 e20), L10

100% success rate (for unit tests)
is the norm!

Ekkart KindlerTesting

Two sources of tests:
 Programmers:

Unit tests for everything which potentially or likely
could be wrong (or which went wrong at a some
time)

 Customers (maybe implemented by programmer):
Functional tests for user stories

34SE2 (02162 e20), L10

Ekkart KindlerBusiness/Development

In agile,
 business drives decisions,
 which are informed by development (implications,

cost risk)

Too much power for either business or development:
too much effort and risk for too little value

35SE2 (02162 e20), L10

Developers work on the
impossible and with
hardly understood risks
and implications!

Too much focus on
technology instead of
business value

Ekkart KindlerOrganizing Facilities

 Group work and group / meeting:
 Arrangement of tables
 Use projectors and blackboards
 Make status of current user stories and tasks visible
 Show metrics (tests, completion status)

 Be clear about: Are you having a group discussion
or are you working individually (in pairs)

 Make sure everybody knows what their tasks are
until the next meeting

36SE2 (02162 e20), L10

Ekkart KindlerDevelopment Strategy

Continuous Integration:
 All coded is integrated within hours
 In a release all tests run 100%
 If a unit test fails, there is nothing more important

than fixing it

37SE2 (02162 e20), L10

Ekkart KindlerDevelopment Strategy

Collective Ownership:
 Complicated code will not survive for long
 Feeling of influence and responsibility on project
 Spreads knowledge of the system

(together with pair programming)

38SE2 (02162 e20), L10

Ekkart KindlerDevelopment Strategy

Pair Programming:
 Increases communication
 understand what you are doing

 (Positive) controlling
 Spreads knowledge of the system

(together with collective ownership)

39SE2 (02162 e20), L10

Ekkart KindlerDesign Strategy

In agile,
 do not design for things that might be useful

only later
 keep things as simple as possible

(for what you need now)
 refactor when need will be

40SE2 (02162 e20), L10

Driven by all four
values of agile

Ekkart KindlerSimplicity heuristics

 ”Code and tests communicate everything you want it
to communicate”

 No duplicate code

 Fewest possible classes
 Fewest possible methods

41SE2 (02162 e20), L10

This includes comments.
Don’t forget reasonable
“JavaDocs” in your code!

Ekkart KindlerDesign Strategy

In agile,
 design and architecture models (graphical

representation of codes design and architecture)
are used for discussion only and are not saved,

 design and architecture will evolve anyway

42SE2 (02162 e20), L10

Ekkart KindlerRoles

 Programmer
 Customer

 Tester
 Tracker

43SE2 (02162 e20), L10

All team members are writing tests. But the
testers are responsible for running the (non-
automated) tests on a regular basis – and
post the test results
 Testing

Keeps track of history (estimates, test) and
helps people to reflect on them
 Monitoring and controlling

Ekkart KindlerRoles

 Programmer
 Customer

 Tester
 Tracker

 Coach
 Consultant

 Big Boss

44SE2 (02162 e20), L10

helps team improving the process, the
practices, design, …

has deep technical knowledge (or is able to
work it out)

conveys courage, confidence and a bit of
insistance

Ekkart Kindler80:20 Rule (Pareto principle)

80% of the effect comes from 20% of the cause

In Software Engineering:
 20% of the features give you 80% of the value
 80% of the users use only 20% of the features
 80% of the code done in 20% of the time

 80% of the bugs found in 20% of the code

45SE2 (02162 e20), L10

In turn, the 20% of the remaining code needs
80% of the time! Therefore estimations, often,
are wrong!

It might be slightly of
90:10, 70:30, but we call
it 80:20 anyway

	Software Engineering 2�A practical course in software engineering
	Dimensions
	Example documents
	II. Agile Development
	1. Motivation
	Co-evolution
	Driving a car
	Gall’s law
	Main message
	Agile manifesto
	2. Background
	Variables
	Note
	Cost of change
	Cost of change
	Agile Values
	Agile Principles
	Fundamental Principals
	Other principles
	Activities
	3. Agile Practices (overview)
	Agile Practices
	Agile Practices
	Agile practices
	Synergy of Practices
	Example
	4. Details
	Pair programming
	Pair programming
	Agile Test Strategy
	Agile Test Strategy
	Agile Test Strategy
	Agile Test Strategy
	Testing
	Business/Development
	Organizing Facilities
	Development Strategy
	Development Strategy
	Development Strategy
	Design Strategy
	Simplicity heuristics
	Design Strategy
	Roles
	Roles
	80:20 Rule (Pareto principle)

