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Ekkart KindlerExample documents

 Product objective
 Product use
 Use cases
 User story
 Domain model
 Code (implementation)
 Test
 Prototype
 GUI definition
 GUI mockup
 ...

 Design
 Architecture
 Data base schema
 XML Schema
 OOA
 OOD
 Systems specification
 Requirements 

specification
 Formal model
 Handbook
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II. Agile Development



Ekkart Kindler1. Motivation

Conceive
Design
Implement
Operate
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How
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Ekkart KindlerCo-evolution

HOWWHAT
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“What” should 
the software 
do?

“How” is it 
realized?



Ekkart Kindler

7SE2 (02162 e20), L10

Driving a car

One cannot steer a 
standing car !



Ekkart KindlerGall’s law

“A complex system that works is invariably found to
have evolved from a simple system that worked. A
complex system designed from scratch never works
and cannot be patched up to make it work. You have
to start over with a working simple system.”

John Gall: Systemantics: An essay on how systems 
work, and especially how they fail. General 
Systemantics Press, Ann Arbor, Michigan, 1975.
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Ekkart KindlerMain message

Experience shows (for complex systems):
 CDIO does not work purely sequentially
 Once we have implemented a system (how),

we get a (much) better understanding of
what the system should do!

 Software developments is very much about
managing risk

 Development process needs adjustments
while we are going

 Agile Software Development
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Ekkart KindlerAgile manifesto

„We are uncovering better ways of developing software by 
doing it and helping others do it. Through this work we have 
come to value:
 Individuals and interactions over processes and 

tools
 Working software over comprehensive 

documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value 
the items on the left more.“
Kent Beck et al. 2001 
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Ekkart Kindler2. Background

 Four variables of software development
 Cost of change

Agile development
 Values
 Principles
 Basic activities
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Ekkart KindlerVariables

Four variables of software development process
 Cost
 Time
 Quality
 Scope
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Ekkart KindlerNote

 There is no way the customer could pick all four 
variables

 Even three variable are not fully independent
 More developers do not necessarily speed up the 

process (and not in a linear way)

 Agile helps adjusting these variables dynamically 
(and get the most value for the customer):
 Short iterations
 More practise in estimating user stories (developers)
 Prioritization of user user stories (customer)
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Ekkart KindlerCost of change
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Cost



Ekkart KindlerCost of change
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Cost

Time
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 Communication

 Simplicity

 Feedback

 Courage
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HOWWHAT



Ekkart KindlerAgile Principles

 Values give some orientation and criteria for a 
successful agile development

 But, values are too vague for defining concrete 
practices

 Therefore, agile builds on principles
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Ekkart KindlerFundamental Principals

 Rapid feedback

 Assume Simplicity

 Incremental change

 Embracing change

 Quality work
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Ekkart KindlerOther principles

 Teach learning
 Small initial investment
 Play to win
 Concrete experiments
 Open, honest communication
 Work with people’s instincts, not against them
 Accepted responsibilities
 Local adaptation
 Travel light
 Honest measurements
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Ekkart KindlerActivities

 Coding
 Testing
 Listening
 Designing
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Ekkart Kindler3. Agile Practices (overview)

 On-site customer
 Small/short releases 2-3 week
 Planning game
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Ekkart KindlerAgile Practices

 Coding standards 
 Testing
 Continuous integration
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Ekkart KindlerAgile Practices

 Pair programming
 Simple design
 Refactoring
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Ekkart KindlerAgile practices

 Metaphors:
Simple story (and terminology) how the system 
should work; speak in simple pictures  

 Collective ownership:
Anyone can change, anyone has obligation to 
change (if value increases)

 40-hour week,
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Ekkart KindlerSynergy of Practices

 The different practices support each other
 One practice’s weakness is the others strength
 You cannot pick/chose practices arbitrarily
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Ekkart KindlerExample

Short Releases would be impractical, unless
 Planning Game helps identifyng the user stories 

with most value
 Coninuous Integration allows deploying its with 

minimal effort
 Testing would guarante low (or desired) defect rate
 Simple Design allows you what is needed now

26SE2 (02162 e20), L10



Ekkart Kindler4. Details 

 Planning Game
 Testing

 Organizing facilities
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Ekkart KindlerPair programming

is NOT
 one person programming, another only watching
 one peson typing
 a tutoring session for the other person
 always pairing up with the same person
 programming with the buddy you best get along with 
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Ekkart KindlerPair programming

is
 communication and interaction
 getting a second opinion
 critically reviewing the others work
 correctness
 simplicity
 avoid tunnel view

 learing from each other
 dynamic
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If you are not an expert, 
ask one to join you for 
the task at hand



Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its 

interface and tests for it
 Unit test are automated, and run every time new 

code is checked in
 Everybody is responsible for fixing broken code 

(code which results in failed tests)
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Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its 

interface and tests for it (tests first)
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This helps with becoming clear of 
what should be implemented and 
how exactly the interface should 
be!
Raises level of detail and makes 
things technical

See lecture 8: Test Driven 
Development



Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its 

interface and tests for it
 Unit test are automated, and run every time new 

code is checked in

32SE2 (02162 e20), L10

Indicator of quality all the time!



Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its 

interface and tests for it
 Unit test are automated, and run every time new 

code is checked in
 Everybody is responsible for fixing broken code 

(code which results in failed tests)
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100% success rate (for unit tests) 
is the norm!



Ekkart KindlerTesting

Two sources of tests:
 Programmers:

Unit tests for everything which potentially or likely 
could be wrong (or which went wrong at a some 
time)

 Customers (maybe implemented by programmer):
Functional tests for user stories
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Ekkart KindlerBusiness/Development

In agile,
 business drives decisions,
 which are informed by development (implications, 

cost risk)

Too much power for either business or development: 
too much effort and risk for too little value
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Developers work on the 
impossible and with  
hardly understood risks 
and implications!

Too much focus on 
technology instead of 
business value



Ekkart KindlerOrganizing Facilities

 Group work and group / meeting:
 Arrangement of tables
 Use projectors and blackboards
 Make status of current user stories and tasks visible
 Show metrics (tests, completion status)

 Be clear about: Are you having a group discussion
or are you working individually (in pairs)

 Make sure everybody knows what their tasks are
until the next meeting
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Ekkart KindlerDevelopment Strategy

Continuous Integration:
 All coded is integrated within hours
 In a release all tests run 100%
 If a unit test fails, there is nothing more important 

than fixing it
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Ekkart KindlerDevelopment Strategy

Collective Ownership:
 Complicated code will not survive for long
 Feeling of influence and responsibility on project
 Spreads knowledge of the system

(together with pair programming)
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Ekkart KindlerDevelopment Strategy

Pair Programming:
 Increases communication
 understand what you are doing

 (Positive) controlling 
 Spreads knowledge of the system

(together with collective ownership)
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Ekkart KindlerDesign Strategy

In agile,
 do not design for things that might be useful

only later
 keep things as simple as possible

(for what you need now)
 refactor when need will be
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Driven by all four 
values of agile



Ekkart KindlerSimplicity heuristics

 ”Code and tests communicate everything you want it 
to communicate”

 No duplicate code

 Fewest possible classes
 Fewest possible methods
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This includes comments. 
Don’t forget reasonable 
“JavaDocs” in your code!



Ekkart KindlerDesign Strategy

In agile,
 design and architecture models (graphical 

representation of codes design and architecture)
are used for discussion only and are not saved,

 design and architecture will evolve anyway
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 Programmer
 Customer

 Tester
 Tracker
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All team members are writing tests. But the 
testers are responsible for running the (non-
automated) tests on a regular basis – and 
post the test results
 Testing

Keeps track of history (estimates, test) and  
helps people to reflect on them
 Monitoring and controlling
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 Programmer
 Customer

 Tester
 Tracker

 Coach
 Consultant

 Big Boss
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helps team improving the process, the 
practices, design, …

has deep technical knowledge (or is able to 
work it out)

conveys courage, confidence and a bit of 
insistance



Ekkart Kindler80:20 Rule (Pareto principle)

80% of the effect comes from 20% of the cause

In Software Engineering:
 20% of the features give you 80% of the value
 80% of the users use only 20% of the features
 80% of the code done in 20% of the time

 80% of the bugs found in 20% of the code
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In turn, the 20% of the remaining code needs 
80% of the time!  Therefore estimations, often, 
are wrong!

It might be slightly of 
90:10, 70:30, but we call 
it 80:20 anyway
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