
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

VII. Quality Management

Ekkart Kindler

3SE2 (02162 e20), L07

Main Message

Planning
phase

Definition
phase

Design
phase

Implem.
phase

Acceptance
phase

Mainten.
phase

Ekkart Kindler

4SE2 (02162 e20), L07

1. Overview

Questions
 What is quality?
 How can we measure it?
 How can we “produce” it?

Ekkart Kindler

5SE2 (02162 e20), L07

Quality

The totality of features and
characteristics of a product or service
that bear on its ability to satisfy stated or
implied needs
(ISO 8402, ISO 9126)

Ekkart Kindler

6SE2 (02162 e20), L07

Quality Characteristics (ISO 9126)

A set of attributes of a product by which
its quality is described and evaluated

A quality characteristic may be refined
into sub-characteristics (over several
levels)

Ekkart Kindler

7SE2 (02162 e20), L07

Quality characteristics (ISO 9126)

Functionality
Reliability
Usability
Efficiency
Maintainability
Portability

Ekkart Kindler

8SE2 (02162 e20), L07

Sub-characteristics

Functionality
 Suitability
 Accuracy
 Interoperability
 Compliance
 Security

Ekkart Kindler

9SE2 (02162 e20), L07

Sub-characteristics

Reliability
Maturity
 Fault-tolerance
 Recoverability

Ekkart Kindler

10SE2 (02162 e20), L07

Sub-characteristics

Usability
 Understandability
 Learnability
 Operability

Ekkart Kindler

11SE2 (02162 e20), L07

Sub-characteristics

…

Ekkart Kindler

12SE2 (02162 e20), L07

Features & Metrics

 Feature: property for assessing the quality
(sub-)characteristics of a product

Comments, structure of the code, number of
methods or classes, …

 Quality metric: a quantitative scale and
method which can be used to determine the
value a feature takes for a specific software
product

 Software metrics

Ekkart Kindler

13SE2 (02162 e20), L07

Quality requirement

Defines, for every feature, the
minimum quality metrics to be
reached (quality level)

Ekkart Kindler

14SE2 (02162 e20), L07

Quality Assurance (QA)

All actions to provide confidence
(assure) that the product meets the
quality requirements

Ekkart Kindler

15SE2 (02162 e20), L07

Example: Action

Tests are an action for QA

Problem:
 Tests can assert quality

(if it is there)
 But test do not “generate quality”

(they can only sort out products with
bad quality)

Ekkart Kindler

16SE2 (02162 e20), L07

Quality Management (QM)

 is much more than just quality
assurance!
Quality management comprises all

measures and actions to “generate”
and “assure” quality

Quality needs to be planned,
controlled and assured!

Ekkart Kindler

17SE2 (02162 e20), L07

Quality Planning

Which product (part) needs to be
checked
 when
 by whom, and
 with respect to which quality

requirements!

Ekkart Kindler

18SE2 (02162 e20), L07

2. Principles

 Product centred QM:
Quality will be assured directly at the product
(QA).

 Process centred QM:
“Quality of the process” assures that the produced
product has the required quality (ISO 900x,
CMM, …)

Ekkart KindlerQM in Agile?

Discussion:
 Which QM principle does agile development follow?

19SE2 (02162 e20), L07

Ekkart Kindler

20SE2 (02162 e20), L07

Experience shows:

Purely product oriented QM turned out to
be impractical for software development!

Ekkart Kindler

21SE2 (02162 e20), L07

Constructive measures
during the development take care that, at
the end, quality requirements are met

Analytical measures
check, at the end, whether the product
meets the quality requirements

Ekkart Kindler

22SE2 (02162 e20), L07

Constructive Measures

 Notations
 Methods
 Tools
 …

 Predefine schemas or templates
 Conventions
 Standards
 Check lists
 …

Can enforce syntactical
conventions!

MDA
Code generation

Ekkart Kindler

23SE2 (02162 e20), L07

Analytical Measures

 Testing procedures
run the product (program) for checking the
quality

Analytical procedures
asses the quality without executing it
(in particular for documents)

Ekkart Kindler

24SE2 (02162 e20), L07

Testing Procedures

Dynamic test
Simulation
Symbolic tests
…

Ekkart Kindler

25SE2 (02162 e20), L07

Analytical procedures

Program analysis (static analysis)
Program verification
Review (Section 3.1)
…

The transition from testing to analysing procedures is
continuous!

Ex.: Model checking, slicing, symbolic execution …

Ekkart Kindler

26SE2 (02162 e20), L07

Principles

Explicit definition of the quality
requirements and quality planning
Constructive Measures
Early and continuous
 Independent
Quantitative (metrics/measurable)

Ekkart Kindler

27SE2 (02162 e20), L07

Early measures

The earlier errors are found, the less
follow-up costs it will cause

 Errors should be detected as early
as possible

Ekkart Kindler

28SE2 (02162 e20), L07

Independent QA

Nobody likes to invalidate the own
product (“psychology of testing”)!
 If you forget a special case while

programming, you are likely to forget
to test exactly this case too!
 QA actions should not only be

taken by the developer or
programmer himself

Ekkart Kindler

29SE2 (02162 e20), L07

3. Assessment Methods

 “Review”
 Audit
 Inspection
 Review
 Walkthrough
 …

 Testing
 Coverability
 Unit tests
 Integration tests
 Acceptance tests
 …

Ekkart Kindler

30SE2 (02162 e20), L07

3.1 “Review“

 More or less formal process, with the goal to
identify errors, inconsistencies, ambiguities
(weaknesses in general) of a document
 To this end, the document is inspected and

discussed in a systematic way (with the
authors present)
 The result is a review report (recording the

tracked problems) or the release of the
document (possibly after several iterations)

Ekkart Kindler

31SE2 (02162 e20), L07

Psychology of “Reviews”

Problem:
Authors “are in the line of fire” or are

“grilled”

Psychological aspects need to be
considered: e.g.
 No superiors present
 No evaluation of persons based on reviews
 …

Ekkart Kindler

32SE2 (02162 e20), L07

Inspection

Very formal form of a „review“

Participants:
 Moderator
 Author
 Reviewer
 Recorder

Ekkart Kindler

33SE2 (02162 e20), L07

Inspection

Procedure:
 Initial check

(Moderator can refuse inspection)
 Planning
 Individual review

(by reviewers)
 Inspection session

(all participants; result: records)
 Revision
 Final check
 Release

iteration
(if necessary)

Ekkart Kindler

34SE2 (02162 e20), L07

Review

Simple form of a “review“

Participants:
 Moderator
 Authors
 Reviewer
 Recorder

Ekkart Kindler

35SE2 (02162 e20), L07

Review

Procedure:
 Individual review

(result: comments on document)
 Inspection session

(result: record)
 Revision
 Final check

Iteration

Ekkart Kindler

36SE2 (02162 e20), L07

Walkthrough

 Informal version of “reviews”

Participants:
 Author
 Reviewer

Ekkart Kindler

37SE2 (02162 e20), L07

Walkthrough

Procedure:
 Maybe, individual review
 Inspections session

(author moderates; result: record)

Ekkart Kindler

38SE2 (02162 e20), L07

3.2 Testing

„Testing is the execution of a program in
order to find (as many as possible)
errors“

Ekkart Kindler

39SE2 (02162 e20), L07

Test

A test should find deviations between the
actual and the expected behaviour of a
program

A test consist of a set of input data
along with the expected result

Running a test means executing the
program with the input data and
comparing the actual result with the
expected result

Ekkart Kindler

40SE2 (02162 e20), L07

Testing and QA

 Tests can increase the confidence in
the absence of errors; this provides a
measure for
 Accuracy (functionality) and the
 Fault-tolerance and maturity (reliability)

of the software

Ekkart Kindler

41SE2 (02162 e20), L07

Test Levels

There are different levels of test:

 Acceptance tests
(by/with client)
 System tests
 Integration tests
 Unit tests

Ekkart Kindler

42SE2 (02162 e20), L07

Automation

 Test can be executed automatically
(JUnits)

 Regression test will be executed automatically
whenever some part of the system was changed
(in order to ensure that the quality of the software does
not regress).

Then, a system will be released only when all
regression test were passed successfully; this
guarantees that supposed corrections did not inject
new errors (JUnits)

 Concurrent (multi-threaded) programs and GUIs are
still problematic

Ekkart Kindler

43SE2 (02162 e20), L07

The Limitations of Testing

 Tests can only show the presence of
errors

 Tests cannot guarantee the absence of
errors

 Absence of errors can be shown by verification;
but, complete verification of software is impractical
today (but sometimes required for parts)

Ekkart Kindler

44SE2 (02162 e20), L07

Questions

What are good test?
How do I test properly?
When did I test enough?
How can I make sure to find as many

errors as possible?

 Systematic testing (see below)
 Principles of testing (see below)

Ekkart Kindler

45SE2 (02162 e20), L07

Principles of Testing

Author does not (exclusively) test
(psychology of testing)
Expected result should be defined before

executing the test
(define tests early XP/agile: before implementation)
Rigorous testing
 Check result carefully

(at best automatically)

 Check “everything”
(systematic testing)

 “over and over again” testing
(regression tests: executed after every change for the
complete system)

Ekkart Kindler

46SE2 (02162 e20), L07

Systematic Testing

Systematic construction of tests
 Black-box Test from specification

(without knowing the implementation):
 Normal cases from specification
 Special cases from specification
 Illegal input from specification

 Glass-box Test from implementation:
 Normal- and special cases from program

conditions (alternatives and loops)
 Coverage criteria (next slides)

Ekkart Kindler

47SE2 (02162 e20), L07

Coverage

if (x == 0)
z = x-y;

else
x = x/y;

if (y > 0)
z = 27;

else
z = y/x;

Statement coverage:
Number of (different) statement
executed by at least one test divided
by the number of all statements of the
program.

100%: Every statement was executed
at least once

Ekkart Kindler

48SE2 (02162 e20), L07

Coverability

if (x == 0)
z = x-y;

else
x = x/y;

if (y > 0)
z = y/x;

else
z = 27;

100% Statement coverage:
Every statement was at least
executed once

Tests with 100% statement coverage:

• x=0, y=0

• x=1, y=1

Ekkart Kindler

49SE2 (02162 e20), L07

Coverage

if (x == 0)
z = x-y;

else
x = x/y;

if (y > 0)
z = y/x;

else
z = 27;

100% Path coverage:
Every path of the program was
executed at least once.

Tests with 100% path coverage :

• x=0, y=1

• x=0, y=0

• x=1, y=1

• x=1, y=0

Problem: Loops give rise
to infinitely many paths!
We don’t go into details
here.

Ekkart Kindler

50SE2 (02162 e20), L07

Construction vs. Counting

 For glass-box test, we can construct test in
such a way that a specified coverage will be
reached
 By instrumenting our software, we can also

“count” which coverage is reached (if it is not
high enough, we can add further tests to the
test set; some test suits do this automatically)

 Both approaches can be combined

Ekkart Kindler

51SE2 (02162 e20), L07

Warning

 Even if you have achieved 100% path
coverage, this does not guarantee that all
errors are found!!!!

 Nevertheless this is a quality metric for the
sub-characteristics “Accuracy” of the product
and increases the confidence in the quality of
the product

Ekkart KindlerTest Driven Development

eXtreme Programming (agile) mindset:
 Only features that are tested by an automated test

“exist”
 Each user story is associated with a set of tests

(customer tests / functional tests)
 Tests for a user story are written before you begin

implementing the user story
 The implementation of a user story is finished, when

the tests associated with it run through
 Each method should be associated with a test

(programmer tests / unit tests)

52SE2 (02162 e20), L07

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in
 Everybody is responsible for fixing broken code

(code which results in failed tests)

53SE2 (02162 e20), L07

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it (tests first)

54SE2 (02162 e20), L07

This helps with becoming clear of
what should be implemented and
how exactly the interface should be!

Raises level of detail and makes
things technical.

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in

55SE2 (02162 e20), L07

Indicator of quality all the time!

Ekkart KindlerAgile Test Strategy

Test driven development:
 Before implementing functionality, you write its

interface and tests for it
 Unit test are automated, and run every time new

code is checked in
 Everybody is responsible for fixing broken code

(code which results in failed tests)

56SE2 (02162 e20), L07

100% success rate (for unit tests)
is the norm!

Ekkart KindlerTesting

Two sources of tests:
 Programmers:

Unit tests for everything which potentially or likely
could be wrong (or which went wrong at a some
time)

 Customers (maybe implemented by programmer):
Functional tests for user stories

57SE2 (02162 e20), L07

Example: When someone
moves in front of the Q-
motion, the Q-plug is
switched on; after a while
without motion, the Q-plug is
switched of!

Tip: For testing complex
user stories with hardware,
it might be worthwhile to
realize an emulator for
hardware devices!
 slide 60/61

Ekkart KindlerTesting

Two sources of tests:
 Programmers:

Unit tests for everything which potentially or likely
could be wrong (or which went wrong at a some
time)

 Customers (maybe implemented by programmer):
Functional tests for user stories

58SE2 (02162 e20), L07

Functional / integration tests fail for
some time. But should be eventually
fixed. Functional tests might not run
all the time; but, someone (roles:
tester) is responsible for running the
tests an a regular basis.

Ekkart KindlerOther tests

Unit tests and functional tests are the most important
tests. But, others might be relevant
 Parallel tests (compare an old and a new system)
 Stress test (performance)
 Monkey test (unexpected input)
 ...

59SE2 (02162 e20), L07

Ekkart KindlerTesting in the “real world”

Problem:
 When hardware and devices are involved, it is

difficult to test some functionality automatically:

Example:
rule engine: when CO2 level rises above 1000ppm,
eventually the window is opened and the thermostat
is set to “*” (or 4 degrees)

60SE2 (02162 e20), L07

How do you make the CO2 level rise
above 1000ppm by a test?

Ekkart KindlerSolution

For testing such functionality, implementing an
emulator of hardware (in the case of the example
from SE2 2019, a Raspberry Pi) with some sensors
and actuators, which can be set manually (via a
graphical interface) or programmatically (via an API),
might help.

61SE2 (02162 e20), L07

This year, it could be an emulator
simulating the upload of new car
data?

	Software Engineering 2�A practical course in software engineering
	VII. Quality Management�
	 Main Message
	1. Overview
	Quality
	Quality Characteristics (ISO 9126)
	Quality characteristics (ISO 9126)
	Sub-characteristics
	Sub-characteristics
	Sub-characteristics
	Sub-characteristics
	Features & Metrics
	Quality requirement
	Quality Assurance (QA)
	Example: Action
	Quality Management (QM)
	Quality Planning
	2. Principles
	QM in Agile?
	Experience shows:
	Dias nummer 21
	Constructive Measures
	Analytical Measures
	Testing Procedures
	Analytical procedures
	Principles
	Early measures
	Independent QA
	3. Assessment Methods
	3.1 “Review“
	Psychology of “Reviews”
	Inspection
	Inspection
	Review
	Review
	Walkthrough
	Walkthrough
	3.2 Testing
	Test
	Testing and QA
	Test Levels
	Automation
	The Limitations of Testing
	Questions
	Principles of Testing
	Systematic Testing
	Coverage
	Coverability
	Coverage
	Construction vs. Counting
	Warning
	Test Driven Development
	Agile Test Strategy
	Agile Test Strategy
	Agile Test Strategy
	Agile Test Strategy
	Testing
	Testing
	Other tests
	Testing in the “real world”
	Solution

