=
—_
=

i

Software Engineering 2
A practical course in software engineering

Ekkart Kindler

DTU Compute
Department of Applied Mathematics and Computer Science

+ Qf
YA v s
Flx+Ax)= Z f() OO

K)x

=
—_
=

i

V. Modelling Software

DTU Compute
Department of Applied Mathematics and Computer Science

f(x+Ax):SI (— o X

DTU Compute

1. Motivation

= \Which models are there?

= \What are “software models”?
\ " What are they good for?
— * Why do WE need them?

= \What is software? @%

[0
g\ = \What is a model? j‘m %i%f
<R KRR

SE2 (02162 e20), LO5

=
—
=

M

=5

i

Modell o

M

Modell [/at.-vulgarlat.-it.] das; -s, -e:

/. die vereinfachte Darstellung der Funktion eines
Gegenstands od. des Ablaufs eines
Sachverhalts, die eine Untersuchung od.
Erforschung erleichtert od. erst moglich macht.

[nach Duden: Das Fremdworterbuch, 1990].

SE2 (02162 e20), L05 4

Model imontes

M

Modell [/at.-vulgarlat.-it.] das; -s, -e:

7. the simplified description of the function,
purpose, or process of something; it enables us
Investigating and analysing this thing.

[nach Duden: Das Fremdworterbuch, 1990].

SE2 (02162 €20), L05 5

—
—
=

Reminder (cf. LO1)

M

WHAT

SE2 (02162 e20), LO5

‘ DTU Compute

Purpose of Models

M

= pbetter understanding the ,thing"” under
iInvestigation (or development) - help building
“your mental model” of the “thing”
= communication
= on the appropriate level of abstraction
= with different kinds of people
= from different angles

= abstraction / composition

= analysis and verification
= consistency, completeness, correctness,

performance, risks, effort, ... g\
= code generation (cf. L01) (f

SE2 (02162 e20), L05 7

Reminder (cf. LO1)

SE2 (02162 e20), LO5

DTU Compute

:Token

—
—
=

:Class

PetriNet
?
Object
| |
sour
Node Arc
9 1 target
Transition Place k Token
:Petrinet
target|
| :Transitior& :Arc $:Place
Atarget sourA
—| :Arc :Arc
V source targe!
t
— :Place frge :Arc 50“3 :Transition

o
o
o
—— T
ClassDiagram
1 I *
sourc
Class Association
target
K :Associati n\I
& 2 :Class
:Associati¢n

Roles of models in SE |57

)
—_—
=

M

= traditionally”: More or less automatic:
= Sketches of ideas
= Forward engineering
= Reverse engineering
= Reengineering
= Model Driven Architecture (MDA)

= Generating (at least part of) the
software from models

- Models ARE the software
(or a part of it)

* Models encoded in the software (e.g. JPA)

SE2 (02162 e20), LO5

ms

1.1 ,Traditional® | e

Initially: Informal sketches of software for
discussion, for better understanding or for
communicating an idea @'Q

Later: Standardized (graphical) notations (UML)

From these diagrams, the program code was
produced (mostly) manually!

E:orward engineering

SE2 (02162 e20), LO5

=
—
=

JTraditional®

M

= Since software is often not well-documented, it

became necessary to retrieve or to extract the
essential idea of the software from its code

Reverse engineering J

= These models are used to better understand
the existing software, and to change the
software based on this understanding

ing = +
Reengineering = Reverse }
Forward engineering
SE2 (02162 €20), LO5

11

DTU Compute

Automation

M

= Some reverse and forward engineering tasks
could be automated (mainly structural parts)

= Changes made in the models obtained by
reverse engineering can (sometimes) be
automatically transferred back into the original

code
anundtrip engineering J

12

SE2 (02162 e20), LO5

1.2. Reverse engineering |57

M

Starting point:
= Software cannot be used in isolation
= |t interacts with other software

* |[n most cases, developers must extend

existing software or integrate their software to
existing one

= Existing software is often not documented (or
at least not documented well)

SE2 (02162 e20), LO5 13

Motivation Bz

—
—
=

M

= Before you can (use,) change or extend
software, we need to understand it

SE2 (02162 e20), LO5

14

=
—
=

Definition | St

M

= Reverse engineering is the process that, for
an existing software system, tracks down and
retrieves (“mines”) its underlying ideas and

concepts and documents them in form of
models

* The development process is run in the reverse
direction (reverse engineering)

SE2 (02162 e20), LO5 15

=
—
=

Result | et

M

= |n the ideal case, the result of reverse

engineering would be a specification of the
software system

= Very important: abstraction and focus on the
essentials
u A

' ' “mine” the
s it possible to'm |
ideas and 10 capture them 1n

Is at all?
mode)

SE2 (02162 e20), LO5 16

‘ DTU Compute

Tools

M

= Tools can support reverse engineering

= But, they cannot fully relieve an engineer of the
burden of abstraction and focus!

This is the task of an engineer!

= Moreover, many of today’s tools come up with
wrong or incomplete results, which need to be
corrected or amended by hand.

SE2 (02162 e20), L05 17

DTU Compute

Example: Code

=
=

M

public interface Moveable { public class Shuttle extends Element implements Moveable {
public void move() ; private boolean driving;
} private Track at;
public abstract class Element { private Simulation simulation;
.. public Track getAt() {
} return this.at;
public class Track extends Element { }
private Track next; public void setAt(Track value) ({
private Track prev; if ((this.at == null && value != null) ||
public Track getNext() { (this.at !'= null && 'this.at.equals(value))) {
return this.next; this.at = value;
} }
public void setNext (Track value) { }
if (this.next !'= value) { public boolean isDriving() {
if (this.next '= null) { return this.driving;
Track oldValue = this.next; }
this.next = null; public void setDriving(boolean value) {
oldvalue.setPrev (null); this.driving = value;
} }
this.next = value; public Simulation getSimulation() {
if (value !'= null) { return this.simulation;
value.setPrev (this); }
} public void setSimulation(Simulation value) {
} if (this.simulation !'= value) ({
} if (this.simulation != null) {
public Track getPrev() { Simulation oldValue = this.simulation;
return this.prev; this.simulation = null;
} oldvalue.removeFromShuttles (this);
public void setPrev(Track value) { }
if (this.prev != value) { this.simulation = value;
if (this.prev != null) { if (value !'= null) {
Track oldValue = this.prev; value.addToShuttles (this);
this.prev = null; }
oldvalue.setNext (null); }
} }
this.prev = value; public void move () {
if (value !'= null) {
value.setNext (this); }

} }

SE2 (02162 e20), LO5

—
—
=

DTU Compute

M

Example: Code

public class Simulation ({

private TreeSet shuttles = new TreeSet();
public void addToShuttles (Shuttle value) {
if (value '= null) {
boolean changed = this.shuttles.add (value);
if (changed) {
value.setSimulation (this);
}
}

}
public Iterator iteratorOfShuttles() {

return this.shuttles.iterator ()
}
public void removeFromShuttles (Shuttle value) {
if (value '= null) {
boolean changed = this.shuttles.remove
(value) ;
if (changed) {
value.setSimulation (null);
}
}

}
public boolean hasInShuttles (Shuttle value) ({

}
public int sizeOfShuttles() {

}
public void removeAllFromShuttles () {

}

SE2 (02162 e20), LO5 19

Example: ult (tool)

/NB: “Getters and
setter methods’ for

class attributes and
gssociations shqu\d
NOT be shown in the

Qnode\. J

Simulation

- shuttles : Treeiset

+ addToshuttles) @ void
+ iteratorftshuttles() ;o terator

B =T = -t

‘ DTU Compute

o
—

M

Moveable Efement

+ Mo el @ void

i

Shuttle

- driving : boolean
-at: Track
- simulation ; Simulation

Track

- next: Track
- ey Track

+ remaoy eFromshuttles) o void

+ hasinshuttles() : boolean

+ sizelifshuttles() : int

+ remaoy eAllFromshuttles void

SE2 (02162 e20), LO5

+getati) - Track
+ setAt(- void
+ isDriving() : oolean

+ setDriving () : void

+ getsimulationd) ; simulaticon
+ setsimulation() : woid

+ Mo el

+ getMext) : Track
+ setMewti) : void
+ getFrev : Track
+ setPrevi void

| .

rNB: Importan
. Cardinalities
. Names for roles

t information missing: \

o

—\J

Example: Result (manual)

Simulation

—
—
=

SE2 (02162 e20), LO5

‘ DTU Compute
e
L
<=
EE g] =] = o -0
Moveable Element
+ mMoved ;o woid
i
| 0.1 prev
Shuttle
.1 0. 0.1 Track 0.1
+ driving : boolean p——=o _
sirmukation s hultles - d o Next
+ Mo &l -
Abstraction
21

Tools (cntd.) | et

M

= Much information missing (wrong)
= Redundant information

= Typically, the models cover the structure only;
behaviour models missing

= The results that tools come up with are on a very
low level of abstraction (class diagrams or very
basic design patterns)

= - Still very helpful (and current research improves
the situation)

SE2 (02162 e20), L05 22

‘ DTU Compute

In this course

M

= |nitially, we use models for discussion:

= domain
= architecture (see project discussions)

= | ater, we will use models for written

documentation

= e.g. use case diagrams or activity diagrams (what)

= e.g. component diagrams and sequence diagrams
(how)

SE2 (02162 e20), LO5 23

Code as models

‘ DTU Compute

represented as Java code with some tags

to a database

M

In some technologies (e.g. JPA), the models are

The Java classes represent the entities of a domain
= By annotations, they can automatically be mapped

= Even though this is code, they should be considered

as "WHAT”

SE2 (02162 e20), LO5

-

some tags of JPA;
how entities are m_
databaseé schema.

however, define
apped to a

th‘S |S “HOW” -

N

_/

_

24

M

1.3 Model based SE | et

Today: We can generate parts of the code form
the UML class diagrams automatically
(MDA, MDE, EMF, EMFT/GMF)

= Class diagrams - Java class stubs with standard _
access methods (see RE example) q Code First or

. _ o
= Implementation of standard behaviour:| JPA, models &

~

_ _ de; anyway
Loading and saving models (t;r(\)ese are model
Accessing and modifying the models from which oth?;d

. . . : ra .
Editors and graphical user interfaces KCOde is QeneTem=™

= The actual functions is implemented by hand

Future: Actual functions also ,modelled” and
code generated

SE2 (02162 e20), LO5 25

My favourite example

From this (EMF) model for Petri nets:

Generation of (Java) code for

e all classes

e methods for changing the Petri net

e |oading and saving the Petri net as
XML files (= XMI)

With this and some more GMF
information:

Generation of the Java code of a
graphical complete editor (with many
fancy features). No programming at all
(to start with).

SE2 (02162 e20), LO5

‘ DTU Compute

PetriNet

!

Object

A

=
—
=

M

Node

SOur

Arc

9 1 target

Transition

Place k—

Token

Transition

Place

Arc

Token

26

‘ i - Object b T
? - o ,
B \\T_/ = F?] org

=
—_
=

DTU Compute
Department of Applied Mathematics and Computer Science

Ekkart Kindler

M

——
| Peheivel |

e PetriNet
-
e *

‘ 1 £ 1 '] public EList<PetriNets.Objec]
N / Objes ¢ | o i (object = mull) {

object = new EObjectCon

st<PetriNets.Object>(Petri

—_— || IS
< [Nesde [T Ara | Z|} =
L — # e org.
[% . 1 sou ora.
e Node Arc oy
T Cascioggton =
ora.
| Plose | |rey | 1 targe 7 SR —
rn geObject(;
7 eto opercetesared, esole, coreTypey
Transition Place |‘— Token

4

Analysis
Design

Implementagon Code is

SE2 (02162 e20), L05 27

Benefits of Modelling |27

=
—
=

M

= Better understanding

= Mapping of instances to XML syntax (XMI)

= Automatic code generation

= API for creating, deleting and modifying model
= Methods for loading and saving models (in XMlI)

= Standard mechanisms for keeping track of changes
(observers)

= Editors and GUIs

SE2 (02162 e20), LO5

28

2. Modelling with a Purpose

‘ DTU Compute

Analogies:

= Models as floor plans (see earlier slides)

= Architects and construction engineers use quite
different kind of plans — driven by the purpose

= They even use models (miniatures)

= Models as maps
= Understand the world (- domain)

= Find your way round in the software

SE2 (02162 e20), LO5 29

=
—_
=

DTU Compute
Department of Applied Mathematics and Computer Science

Ekkart Kindler

i

lies

Ed
0
(% -]
===
&2 s

_J

SE2 (02162 e20), L05 30

DTU Compute
Department o

M a p S ‘ t f Applied Mathematics and Computer Science

Ekkart Kindler

—
—
=

M

= Different level of abstraction and detall
= Different focus

= Different aspects

- Different purpose

SE2 (02162 e20), LO5

31

=
—
=

M

Software vs Programming |5

= For programs (small software), models are often not
needed, and making them might be a waste of time

= For software, they are essential for building
something which works out and the different pieces
fit to each other

SE2 (02162 e20), LO5 32

Discussion

= Two models: Which is better?

PetriNet

$

Object

JAN

Node

1 source

L

1 target

Transition

Place IQ—
X

SE2 (02162 e20), LO5

Arc

Token

[0..*] nodes [0.*] arcs

—
—
=

‘ DTU Compute

M

Always ask first:
Better for what?

[E Petrinet]

= name : EString
[0..1] petrinet [0..1] petrinet

H node H arc

= name : EString

=

_[1.1] target [0.*in

[L.1] source [0.*] out ‘

I

[E Transition l

l

\

E Token

E Flace

[]
l r..l] place [0.*] tokens

33

Models to which end

Department of Applied Mathematics and Computer Science

‘ DTU Compute

Ekkart Kindler

—
—
=

M

= Blackboard Discussion (BBD):

Purpose

SE2 (02162 e20), LO5

Kind of model

34

‘ DTU Compute

3. Domain models

M

Petri net example revisited (see next two slides)

Discussion:

= Should in/out (opposites of target and source) be
iIn domain model?

= \What makes them a domain model?

= \What is the difference to a data model or data base
schema®?

SE2 (02162 €20), L05 35

)
—_—
=

Petri net: Domain model

‘ DTU Compute

M

PetriNet
‘ context Arc inv:
(self.source.oclIsKindOf(Place) and
‘* self.target.oclIsKindOf(Transition))

or
ObjECl" (' self.source.oclIsKindOf(Transition)

and
A self.target.oclIsKindOf(Place))
1 source
<
Node Arc

<
1 target
A g

Transition Place ¥ Token

SE2 (02162 €20), L05 36

DTU Compute

=
—_
=

E CO re m Od e I Department of Applied Mathematics and Computer Science o<
Ekkart Kindler >
H Petrinet
= name : EString
[0..1] petrinet [0..1] petrinet
[0.*] nodes [0.*] arcs
| 5 Node H arc
= name : EString [L.1] source [0.*] out
_[1.1] target [0 in
H Transition] [H Place H Token
1] place [0.*] tokens
SE2 (02162 €20), LO5 37

. DTU Compute DIU
Representations of model |

Same model can have different representations:
= Graphical / tree

= Java

= Ecore

= XML Schema (XSD)

Different representation might serve different purposes
and have a different focus!

What would the focus for XSDs, Java and Ecore

- da
e consideret
nb +h annotations

SE2 (02162 e20), LO5

DTU Compute

Petrinet.java

=
—
=

M

/** @model */
public interface Petrinet {

/** @model opposite="petrinet" containment="true" */
List<Node> getNodes () ;

/** @model opposite="petrinet" containment="true" */
List<Arc> getArcs();

/** @model */
String getName () ;

SE2 (02162 e20), LO5

39

DTU Compute

Arc.java

=
—
=

M

/** @model */
public interface Arc {

/** @model opposite="out" required="true" */

Node getSource() ;

/** @model opposite="in" required="true" */

Node getTarget() ;

/** @model opposite="arcs" transient="false" */

Petrinet getPetrinet() ;

SE2 (02162 e20), LO5

40

DTU Compute

Node.java

=
—
=

M

/** @model abstract="true" */

public interface Node {

/** @model opposite="nodes" transient="false" */
Petrinet getPetrinet() ;

/** @model opposite="target" */
List<Arc> getlIn() ;

/** @model opposite="source" */
List<Arc> getOut() ;

/** @model */
String getName () ;

}

SE2 (02162 e20), LO5

41

DTU Compute

u u |
I ra n S Itl O n ava Department of Applied Mathematics and Computer Science
u Ekkart Kindler

=
—_
=

M

/**
* (@model
*/

public interface Transition extends Node {

SE2 (02162 €20), LO5

42

DTU Compute

Place.java

—
—
=

M

/**
* @model
*/

public interface Place extends Node {

/**
* (@model opposite="place" containment="true"“
*/

List<Token> getTokens () ;

SE2 (02162 e20), LO5

43

DTU Compute

Token.java

—
—
=

M

/**
* @model
*/

public interface Token {

/**
* @model opposite="tokens" transient="false"
*/

Place getPlace() ;

SE2 (02162 e20), LO5

44

DTU Compute

/** @model */

public interface Petrinet ({

/** @model opposite="petrinet" containment="true“ */
List<Node> getNodes () ;

/** @model opposite="petrinet" containment="true“ */
List<Arc> getArcs() ;

/** @model */
String getName () ;

SE2 (02162 e20), LO5

o
—

M

45

=
—
=

M

Purpose

‘ DTU Compute

Independently of the representation,

= a domain models solely serves the purpose of
getting a grip on the concepts of a domain

= they are not for programming (even though, they
might later be used for that)

SE2 (02162 e20), LO5 46

4. Software Models | e

—
—
=

M

Whereas domain models are on the "what” only,

software models give an abstraction of the "how” of
the software (architecture and design).

SE2 (02162 e20), LO5

47

Eclipse: JFace

‘ DTU Compute

M

= “JFace is a Ul toolkit with classes for handling many

common Ul programming tasks.”
[]

= Viewers are a core part of editors (there are different
Kinds of viewers), which are generic.

= Here, we discuss the TreeViewer, which is the basis
for the automatically generated tree editor for Petri
nets.

SE2 (02162 e20), LO5 48

https://wiki.eclipse.org/JFace

TreeViewer

TreeViewer

DTU Compute

—
—
=

4 B3 Petrinet My first net
4 () Placepl
+ Token
[] Transition t1
a () Place p2
+ Token
+ Token
[] Transition t2
A Arcpl-=tl
A Arctl -» p2
A Arcp? -»t2
A Arct? -= pl

SE2 (02162 e20), LO5

1
input
>l Object
4)
Assuming that the input
object (model) is a Petri
net (- slides 8 & 36)
\- /
49

TreeViewer

—
—
=

DTU Compute

M

input

TreeViewer

Shows the input as a

of a tree view like
opening and closing
sub-trees, etc)

N

tree (with all the features

)

SE2 (02162 e20), LO5

> Object

4)

Root object of the tree
which is to be shown In
the TreeViewer

o J

50

How?7?7? o

M

= How could the TreeViewer, which does not know
anything about Petri nets (and the classes
representing the concepts of Petri nets), know how
this tree should be shown?
\: input

a D% Petrinet My first net :Petrinet |
4 () Placepl
* Token
|:| Transition t1 N urce target
2 O Place p2 :Transmoné :Arc é :Place
+ Token Atarget sourCA
Toke
[] Transition t2
A Arcpl-»t | Arc Arc |
A Arctl -= pl
A Arcp2->td Vsource I
A Arct --pl t
F :Token — :Place & :Arc = Transitiorf=

SE2 (02162 e20), LO5 51

TreeViewer

=
—
=

M

1
input
>
TreeViewer Object
labelPrpvider 4

ILabelProvider

1 getText(Object) : String
getImage(Object): Image

Provides the label and
the icon for each object

_
: (_ _ 4
ITreeContentProvider For each object, provides
| the current list of
contentProvider| getChildren(Object) : List .
i getImage(Object): Image \Chlldren-

SE2 (02162 e20), LO5 52

TreeViewer

Q]y
1
input
>
TreeViewer Object
labelProvider : / : D
ILabelProvider Will come from the

1 | getText(Object) : String generated code
getImage(Object): Image (ltemProviders for each

kind of object in the
ITreeContentProvider | \M0de!): edit code

—>
contentProvider| getChildren(Object) : List
1 getlmage(Object): Image

%

SE2 (02162 €20), L05 53

|

>

DTU Compute
=T

Similarly for Properties |7

| \ : iInput
4 U3 Petrinet My first net

a4 () Placepl

* Token M u
] Transition t1
4 () Place p2
+ Token urce target]
| :Transitioré :Arc é :Place [
+ Token
I:‘ Transition t2 Atarget sourtA
A Arcpl -1l
A Arctl -» p
— :A A —
A Arc p2 -= 12 ALE A
A Arct? = pl
\/ source l targe
t
:Token — :Place & :Arc =S :Transitiorp=
Tasks [C] Properties &3 Problen "'._,f":=:€> T ‘
Property Value / \
In A Arct2 - pl
Mame = pl

Out] IPropertySourceProvider
(not discussed here)

- J

SE2 (02162 e20), LO5 54

Update Viewer on Changes

* In order to make sure that the viewer properly

‘ DTU Compute

=
—
=

M

updates, whenever changes occur, it registers itself

as listener to the respective elements (actually to

their ltemProviders).

SE2 (02162 e20), LO5

See observer pattern
later in Sect. 5.

4)

. 4

95

Models to which end

‘ DTU Compute

= Understanding the world (conceptual
models, domain models)

= Understanding what the software is supposed to do
(requirements)

= Understanding and finding your way round in
existing software (= Map)

= Qutline the idea of how to realize the software
(architecture)

= Overview of components and their interplay
= Detailed design and realization of the software

SE2 (02162 €20), L05 56

Models to which end (cntd.) | e

=
—
=

M

= Generate parts of the software automatically

= Define data representations (XML, database
schemas, ...)

= Define interfaces between different parts of the
software

SE2 (02162 e20), LO5

o7

5. Design Patterns

‘ DTU Compute |

Design patterns (in software
engineering) are the distilled experience

of software engineering experts on how
to solve standard problems in software

design.

—

Freem "
«experience reuse -

an & Freeman call this

N

_J

N

SE2 (02162 e20), LO5

58

Department of Applied Mathematics and Computer Science

|
Often called the “Gang of j_
Four” (GoF / Go4).
= Gamma, Helm, Johnson, Vlissides:
Design Patterns. Addison-Wesley 1995.

Design Patterns in SE:

‘ DTU Compute

= Fric Freeman, Elisabeth Freeman:
Head First Design Patterns. O'Rellly
2004 [FF]

SE2 (02162 €20), LO5 59

Disclaimer |5 ‘5

= Design patterns are a topic of their own,
worth being taught as a separate course
(e.g. seminar/special course)

= This lecture gives just a glimpse of the
general idea and some patterns, which

are important to understand and use
EMF

SE2 (02162 €20), L05 60

)
—_—
=

Example: Observer (GoF) |57

M

Name and classification
Observer, object, behavioural
Intent

"Define a one-to-many dependency between
objects so that an object changes all its

dependents are are notified and updated
automatically” [GoF].

Also know as
Dependents, Publish-Subscribe, Listener

SE2 (02162 e20), LO5 61

=
=

Example: Observer | e

M

Motivation

[...] maintain consistency between related objects

without introducing tight coupling (which increases
reusability) [...]

Typical Example
... update views when the underlying model

changes ...
Roughly fo\\owinﬂ
GoF

SE2 (02162 e20), LO5 62

Example: Observer

DTU Compute

—
—
=

M

Structure
Subject
ecalttach(Observer) x| Observer
t
\/
/\ notify() {)
forall o:observers
0.update()
}
ConcrSub J
state: State ,1 C
< on
getState() subject CrObS
setState(State) update()
pserver does not W

rThe concrete O

necessarily nee
concrete subjec

SE2 (02} passed as @ parameter

d to “know” the
t: then the subject Is

to update()

63

=
—
=

Example: Observer | e

Participants (see structure)
= Subject

knows its observers

M

provides an interface for attaching and detaching Observer objects
= Observer

defines the updating interface for being notified

= ConreteSubject

stores the state (of interest)
sends notifications

= ConreteObserver

Implements the Observer's updating interface to keep its state
consistent

SE2 (02162 e20), LO5 64

E} e DTU Compute
X p I e - b S rV r Department of Applied Mathematics and Computer Science
|

Ekkart Kindler

=
=

M

Collaboration

~)

Black board discussion

N J

SE2 (02162 €20), LO5

—
—
=

Scheme (GoF) e ——
= Name = Participants
= Classification = Collaboration
" |ntent = Consequences
= Also known as (aka) * I[mplementation
= Motivation = Sample code
= Application = Known uses
= Structure » Related patterns
A

here is more.
ter indications ,

_J

(sometimes t
Variants, “coun

-

SE2 (02162 €20), L05 66

‘ DTU Compute DTU

E\Ihat we called

Pattern: Abstract Factory

Name and classification
Abstract factory, object, creational

Intent
Provide an interface for creating families of related
or dependent objects without specifying their
concrete classes [GoF]

Motivation
Use of different implementations in different contexts
with easy portabillity ...

Eactory up to NOw.

e

SE2 (02162 e20), L05 72

Pattern: Abstract Factory (cntd) |%="

—
—
=

M

0 Client
AbsFactory AbsProdA <
createProdA()
createProdB() 4
JAN
ProdAl ProdA2
\4
Factory1l Factory?2
createProdA() createProdA() AbsProaB
createProdB() createProdB() 4
ProdB1 ProdB2
SE2 (02162 e20), L05

o

—
—
=

Pattern: Singleton (GoF) B

M

Name and classification

Singleton, object-based, creational
Intent

Ensure that a class has only one instance, and

provide a global point of access to it [GoF]
Motivation

g)
gee [GoF] or [FF] for details.

k _J

SE2 (02162 e20), L05 74

‘ DTU Compute

Other relevant patterns

Ekkart Kindler

Department of Applied Mathematics and Computer Science

—
—
=

T

. FaCtory Method Factory Method patiern is
_(‘;Efzrent from the Abstract Factory-

= Command

= Adapter

SE2 (02162 e20), LO5

75

TU Compute

M

Design Patterns: Summary |°

= GoF present 23 patterns

= There are many more (and more complex
combinations of patterns, e.g. MVC --)

= “Pattern terminology” can be used to communicate
design!
= Patterns should not be used to schematically

= Generated code, typically, makes use of many
patterns. Automatic code generation “saves us
making some design decisions” (observer,
singleton, factory, and adapters are part of the EMF-
generated code)

SE2 (02162 e20), LO5 76

6. Model View Controller (MvC) | %=

o
—

M

The domain models are an (the) essential part of

the software

In addition to that, we need

* |[nformation about the presentation of the model to

the user

= The coordination with the user

SE2 (02162 e20), LO5

/Note: These parts of the
software can be modelled t00

(don’t get confused: ,,mo.dels
are everywhere®); domain
Kmodel vs. software model

\

_

77

Modelle View Controller (MVC) |-

-~

o

View

] d

)
—_—
=

M

N

PetriNet

Token /
X

SE2 (02162 e20), LO5

78

MVC

queries

/

/
V4

v

‘ DTU Compute I

N

lew

Representation of model
and user interaction

/ informs on

changes informs on

user interactions

/Model

Domain model and
functions

~

~

<€

Notes: _
. This is the rough idea

only! _
« There are many variants

\

—

selects
\

™
/Controller

~

makes changes

SE2 (02162 e20), LO5

Makes changes and calls
functions of the model

. J

79

MVC

queries

V4

‘ DTU Compute

(v N

Representation of model
and user interaction

lew

/ informs on

EX

K Model does not know
anything about its
views or controllers!

. Many different views
possible

/Model

Domain model and
functions

~

. Changes from other
K parts of the software

selects

changes informson
user interactions \“
A / N
Controller
<€

makes changes

fu

SE2 (02162 e20), LO5

o

Makes changes and calls

nctions of the model

J

80

M V C DTU Compute

M

MVC is a principle (pattern / architecture)
according to which software should be structured

Eclipse and GEF (as well as GMF) are based on
this principle and guide (force) you in properly
using it

SE2 (02162 e20), LO5 81

DTU

Ao d
>
o

/. Behaviour in UML | S

In UML, there are different concepts and diagrams that
concern behaviour modelling oo talk about \

functionality, which is
“hehaviour on a high level of
abstraction”; they are not very
concrete; but a useé case can
be associated with other

= Use case diagrams
= Activity diagrams

= Interaction diagrams pehaviour ?izg(;amcsﬂ;vtig\naof
i more detailed aes
= Sequence diagrams Q\e b haviour, J

= Communication diagrams
= State machine diagrams (State Charts)

= Methods of classes (MOF: Operation)
(in combination with OCL, the input/output relation
of a method can be specified)

SE2 (02162 e20), LO5 82

—
—
=

M

‘ DTU Compute

Activity diagrams

UML way of modelling

business proceSSeS [decision = reject] | Notify
-=| Reject Reject |
[amount == 200] Submit for
> Approval > <>
[Service }
<> [decision = accept] = Approval

Auto
A
> rove
[amount < 200] PP
No action Notify Cancel Cancel
|\ timer No Action Transactiorn Service

From: OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2,
November 2007, p. 331

-®

SE2 (02162 €20), L05 83

—
—
=

‘ DTU Compute

Activity diagrams

M

AND split (parallel split) J
[decision = reject] _:* _
[amount >= 200] qN<>
><LﬁxOR split Jll: 3ccept]}(fgg‘i’il) >(I>
(alternative/choice) P(OR ioin f
[amount < ZODE‘] l A[i?;:‘?ve =

No action Notify Cancel Cancel
\ timer No Action Transaction Service

From: OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2,
November 2007, p. 331

N

SE2 (02162 e20), LO5 84

"Sequence Diagram”

‘ DTU Compute

—
—
=

M

ignition rain wiper wiper
switch sensor control :
turn key |
’ ' on § 5
> off ;
: i >
rain ; :
> s
___on S

SE2 (02162 e20), LO5

85

Communication Diagram” | 5= e

—
—
=

M

SE2 (02162 e20), LO5

ignition L 1. on

: Ny _

wiper /
4:0n
control
_ 3: rain
rain | =
Sensor - \
Basically, communication diagrams and

sequence diagrams are just a different

representation of the same concepts.
_/

86

—
—
=

S d d t I BTLJ”CSEE%E[Applied Mathematics and Computer Science >
eq uence Iag ram e al S) Ekkért kindle; S 7 " o 3
0:Order item 1 %oduct\ item 2 product 2| | :Customer
getPrige(:)
getPrice() | | : e 1: |
»— getPri e() /',‘(Llfellne]
i s s s
anjoun !
¢ i i Events
geti’rice()
| > . getPrice() |
& \e/
| RGEEETEEE : !
¢ @mount()
sum2
____________ e | !
o | getCustomerDiscount() N
discount

SE2 (02162 e20), LO5 87

Sequence diagram (details)

Departn of Appli

DTU Compute
Ekkart Kmdler

athematics and Computer Science

—
—
=

M

0:Order item 1 produ[

getPrice(:)

»— getPrice()
>

getPrice

Call (synchronous) ﬂ

:Customer

getPrice()

getPrice()

—4] amount(l

L

getCustomeirDiscount()
>

_
Self-
call

|

SE2 (02162 e20), LO5

-) - - ———

discount

88

“State maCh | neS” D st T

Ekkart Kindler

=
=

M

on 7J Message }

AN

off | wiper L °f

cain control
rd

engine

rd.rain/w.on

[Initial state

SE2 (02162 e20), LO5

Use of state machines |7 e

Ekkart Kindler

—
—
=

M

ne automaton for each component A
(plus this structure) defines the

SE2 (02162 e20), LO5

complete behaviour of our “wiper
system”.

ignition .
switch T~ / Wiper
wiper
control \
rain L _— wiper
sensor |
0

90

—
—
=

DTU Compute

“State machines”

M

Complex
i . state
wiper
W
control - I
rd
\ i.on/w.off ﬂé G
engine > 2 0
<l -
ot ofifwoff| £ 3
B S
\ /

SE2 (02162 e20), LO5 91

Behaviour in UML

= Use case diagrams

= Activity diagrams

= Interaction diagrams
= Sequence diagrams

= Communication diagrams

DTU Compute

—
—
=

M

—
Discuss:

>Why so many?
S>What is their purpose?

_J

= State machine diagrams (State Charts)

= Methods of classes

(in combination with OCL, the input/output relation
of a method can be specified)

SE2 (02162 e20), LO5

92

Behaviour in UML | et

=
—
=

M

= In general, U_ML behaviour models are used to
analyse, design, and document a system

= |t is hard to generate code from that automatically

The are some exceptions: €.g.
Harel and Marelly (Book: “Come
Let's Play”, 2003) show that
sequence diagrams are
sufficient for making a system
work. But this does not work on

Kthe large scale. /

SE2 (02162 e20), LO5
93

8. Architectural Views |me

(after Sommerville)

M

system ... Mostly
4 sense of MVC and

domain mode!

Development view: ... shows how the software is
decomposed for the development ...

Process view: ... how the system is composed of
Interaction processes at runtime ...

Physical view: shows hardware and how software
components are distributed across it ...

SE2 (02162 e20), LO5 94

4 + 1 Architectural views

= + Use cases

DTU Compute

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
=

i

SE2 (02162 €20), LO5

95

	Software Engineering 2�A practical course in software engineering
	V. Modelling Software
	1. Motivation
	Modell
	Model
	Reminder (cf. L01)
	Purpose of Models
	Reminder (cf. L01)
	Roles of models in SE
	1.1 „Traditional“
	„Traditional“
	Automation
	1.2. Reverse engineering
	Motivation
	Definition
	Result
	Tools
	Example: Code
	Example: Code
	Example: Result (tool)
	Example: Result (manual)
	Tools (cntd.)
	In this course
	Code as models
	1.3 Model based SE
	My favourite example
	Dias nummer 27
	Benefits of Modelling
	2. Modelling with a Purpose
	Maps
	Maps
	Software vs Programming
	Discussion
	Models to which end
	3. Domain models
	Petri net: Domain model
	Ecore model
	Representations of model
	Petrinet.java
	Arc.java
	Node.java
	Transition.java
	Place.java
	Token.java
	Dias nummer 45
	Purpose
	4. Software Models
	Eclipse: JFace
	TreeViewer
	TreeViewer
	How???
	TreeViewer
	TreeViewer
	Similarly for Properties
	Update Viewer on Changes
	Models to which end
	Models to which end (cntd.)
	5. Design Patterns
	Design Patterns in SE:
	Disclaimer
	Example: Observer (GoF)
	Example: Observer
	Example: Observer
	Example: Observer
	Example: Observer
	Scheme (GoF)
	Pattern: Abstract Factory
	Pattern: Abstract Factory (cntd)
	Pattern: Singleton (GoF)
	Other relevant patterns
	Design Patterns: Summary
	6. Model View Controller (MVC)
	Modelle View Controller (MVC)
	MVC
	MVC
	MVC
	7. Behaviour in UML
	Activity diagrams
	Activity diagrams
	“Sequence Diagram”
	”Communication Diagram”
	Sequence diagram (details)
	Sequence diagram (details)
	“State machines”
	Use of state machines
	“State machines”
	Behaviour in UML
	Behaviour in UML
	8. Architectural Views�(after Sommerville)
	4 + 1 Architectural views

