
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

IV. Working Together

Ekkart KindlerWorking together

 Management

 Process Models

 Version Management
Systems

 Collaborative Development
Environments

3SE2 (02162 e20), L04

Parts of this course are based on:

Helmut Balzert: Lehrbuch der Software-Technik:
Software-Entwicklung.
Spektrum Akademischer Verlag 1996.

Helmut Balzert: Lehrbuch der Software-Technik:
Software-Management.
Spektrum Akademischer Verlag 1998.

IV. Working together
IV.1. Management

Ekkart KindlerDefinition

(Software) Management
Planning, organizing, leading, monitoring and
controlling the software development process.

6SE2 (02162 e20), L04

Ekkart Kindler

7SE2 (02162 e20), L04

Management Goals

Define goals and make sure that they will
be achieved

General goals:
 Increase productivity

 Increase quality

decrease
development costs

Increase
product value

In short:
Make a profit and increase it!

Ekkart Kindler

8SE2 (02162 e20), L04

Short- vs. Long-term Goals

Software Management requires

 short-term
(within a project or even within a phase)
and
 long-term

(spanning more projects)

measures

Ekkart Kindler

9SE2 (02162 e20), L04

Long-term measures

productivity

time

measure

Examples:

• Introduction of a new tool

• New development method/
technology

• Increase reusability policy

Ekkart Kindler

10SE2 (02162 e20), L04

Short- vs. Long-term

Short-term measures and long-term measures
often have opposite effects:
 short-term measures result in long-term loss in

productivity
(e.g. quick hack for finishing a project;
programming language)

 long-term measures result in short-term loss of
productivity
(frustration, learning curve)

Ekkart Kindler

11SE2 (02162 e20), L04

Management

 Planning
 set goal
 set dates
 define course of action
 allocate resources
 …

 Organization
 assign tasks
 define organisation structures
 assign responsibilities
 …

Ekkart Kindler

12SE2 (02162 e20), L04

Management

 Leading
 lead and motivate team members
 improve communication
 solve conflicts
 …

 Monitoring and controlling
 check progress
 identify problems (early)
 produce relief
 …

Ekkart Kindler

13SE2 (02162 e20), L04

Management cycle

 Planning
 Organization
 Leading
 Monitoring & controlling

IV. Working together
IV.2. Coordination

Ekkart Kindler

15SE2 (02162 e20), L04

Mechanisms

 Mutual agreement
 Instruction

 Standardization of procedures
 Standardization of the product
 Standardization of the qualification

the team members

 Socialisation

Ekkart Kindler

16SE2 (02162 e20), L04

Clear Responsibilities

 Having many discussions is very good

But, they are useless, unless
 the results are put on record; and
 problems are clearly stated,
 it is fixed
 what should be done
 by whom
 by when

 and kept track of.

Ekkart Kindler

17SE2 (02162 e20), L04

Communication

Coordination and leadership require

communication

Ekkart Kindler

18SE2 (02162 e20), L04

Four sides of a statement
(after Schulz von Thun)

The traffic
light is green.

It is green
down there.

Drive faster so
that we don’t
miss this green
phase!

I am in the
position to tell
you how to
drive!

I am a good
driver!

Ekkart Kindler

19SE2 (02162 e20), L04

request

relationship

Four sides of a statement
(after Schulz von Thun)

self-disclosure

fact

Ekkart Kindler

20SE2 (02162 e20), L04

Good Leadership

 instruct team members
 delegate responsibilities
 motivate team members
 coordinate activities
 stir and improve communication
 identify and solve conflicts
…

Ekkart Kindler

21SE2 (02162 e20), L04

Rules for Leaders

 sets challenging (but achievable) goals
 assigns tasks and required capabilities for

team members
 explains tasks and projects coherently and

thoroughly
 defines (checkable) performance criteria
 identifies sources of problems so that team

members can adjust

Rules after:
Derschka / Balzert II

Ekkart Kindler

22SE2 (02162 e20), L04

Rules for Leaders

 expresses more approval than criticism
 supports team members
 communicates high personal expectations in

an individual way
 puts emphasis on human relations
 gives team members the chance to find and

correct their own mistakes
 includes team members when making

decisions

Ekkart Kindler

23SE2 (02162 e20), L04

Rules for Leaders

 rewards and conveys team members with
respect to innovation and willingness to carry
risks
 regularly discusses the performance with his

team members
 rewards excellent performance

Ekkart Kindler

24SE2 (02162 e20), L04

Rules for Leaders

 Organizes meetings such that cooperation is
encouraged
 Shows personal commitment

IV. Working together
IV.3. Process models

Ekkart Kindler

26SE2 (02162 e20), L04

Waterfall Model

Planning
phase

Definition
phase

Design
phase

Implem.
phase

Acceptance
phase

Mainten.
phase

Does software development
really work this way?

Ekkart Kindler

27SE2 (02162 e20), L04

Process Models

 Process models are the distilled experience of
project plans of successful software projects
 they are idealized and abstract from (many)

details
 this is their strength (and maybe

also their weakness)

 A project plan is a refined, extended, modified
and more concrete process model

Ekkart Kindler

28SE2 (02162 e20), L04

Meta model

Phase

Role

Document
needs

produces

needs

Method Notation

used in

uses

is involved

works on

written in

State
has

Ekkart Kindler

29SE2 (02162 e20), L04

Project plan

 In a project plan, phases are split into tasks
and task might be further split into sub tasks
 Moreover more concrete information is added:
 begin / end
 roles of team members and

assignment to concrete tasks
 effort for each task
 time spent of each member on the assigned tasks

Ekkart Kindler

30SE2 (02162 e20), L04

Project plans

 There are many different notations for such
plans

 It is easy to analyse such plans:
 timing
 critical paths (buffer)
 load on team and every team member
 planning costs
 controlling
 …

Ekkart Kindler

31SE2 (02162 e20), L04

Milestones

 in order to monitor the progress, the project plan
defines milestones

 a milestone is a set of documents/artefacts
(including code) that must be provided at a specific
time and in a specified state

 typically, the documents at the end of a phase or
task or made a milestone

Ekkart Kindler

32SE2 (02162 e20), L04

How to chose milestones

 Verifiable
 It must be verifiable whether the milestone is reached or

not
(“some document is 75% finished” is NOT a milestone)

 Manageable
 The required documents can be produced in a reasonable

amount of time
(weeks or months, not years)

 Regular
 The milestones should be in regular intervals

Ekkart KindlerNot a milestone

 A data is not a milestone!
But, a milestone has a date!

 A task is not a milestone!
But, task may contribute to a milestone (in form of
some artefact, which is deliverd)

33SE2 (02162 e20), L04

Ekkart Kindler

34SE2 (02162 e20), L04

The V-Model (rough idea)

Requirements
specification

Systems
specification

Design

Module imple-
mentation

Acceptance
test

Module
test

Integration
test

System test

The V-Model is much
more detailed. Here
the structure is the
main issue.

Ekkart Kindler

35SE2 (02162 e20), L04

Other models
 Prototype models

 Evolutionary or incremental models

 Spiral model

 …

Idea:
 Stepwise development of product
 Early prototypes (“executable milestones”)
 “Maintenance as part of the development”

IV. Working together
IV.4. Version Management

Ekkart Kindler

37SE2 (02162 e20), L04

Motivation

Situation:
 Software consists of many different documents

(requirements, specification, design,
implementation, documentation, handbook, …)
 Software development is team work

Ekkart Kindler

38SE2 (02162 e20), L04

Motivation

Consequently:
 Many different people access (and possibly

change) the same set of documents
 Often, different people work on the same

document concurrently (independently of each
other at the same time)

Ekkart Kindler

39SE2 (02162 e20), L04

Motivation

Result: Typical problems / questions:
 Where is the up to date version?
 Who has the last working version?
 Where is the version from

September 25, 2020?
 Who has the version that we presented

recently at the meeting with our customer?

Ekkart Kindler

40SE2 (02162 e20), L04

Motivation

Result: Typical problems / questions:
 Who has the documentation that corresponds

to the current implementation?
 Who has undone my changes from yesterday?

And why?
 All my documents are lost!
 …

Ekkart Kindler

41SE2 (02162 e20), L04

Motivation

Simple “Solutions”:
 Shared file system
 Conventions and rules for naming files (e.g.

append: version number and date)
 Policies for changing documents
 Appoint persons responsible for documents

Ekkart Kindler

42SE2 (02162 e20), L04

Motivation

Simple “solutions” are not:
 conventions will be violated
 coordination is inefficient and might cause long

delays
 variants and different configurations need to be

managed by hand
 …
mental capacity should not be wasted with

these “details”

Ekkart Kindler

43SE2 (02162 e20), L04

Motivation

Version and Configuration Management
Systems solve all these problems (almost)
without any extra effort
 when applied properly and
 with good policies

They have even some extra benefits
(e.g. simple backups).

Ekkart Kindler

44SE2 (02162 e20), L04

Version Management Systems

Version
management
system

documents in
hierarchical
structure

Access, modification, and
creation of documents

coordinates accesses and
modifications (maintains
consistency)

user user

Ekkart Kindler

45SE2 (02162 e20), L04

Mechanisms

Pessimistic mechanisms:
A document can never be accessed and
changed by two different people at the same
time ( locking / checkout / checkin).

Optimistic mechanism:
A document can be changed by different
people at the same time; the system detects
and integrates the different changes
( commit / merge / update).

Ekkart Kindler

46SE2 (02162 e20), L04

Optimistic Approach

Version
management
system Local copy of the

current state of the
repository (working
copy)

user

Repository

user

Ekkart Kindler

47SE2 (02162 e20), L04

Optimistic Approach

 An update updates the user’s working copy
with the information from the repository

 A commit brings the changes of the working
copy to the repository (with a new version
number)

Ekkart Kindler

48SE2 (02162 e20), L04

Optimistic Approach

 The user can change files in his/her local
working copy at any time (no locks).

 The working copy and the repository are
synchronized with the commands update und
commit (for all files or selected set of files or a
single file).

Ekkart Kindler

49SE2 (02162 e20), L04

Problem

 What happens, when a user executes an
update and there are changes in the local
working copy already?

Merge of the changes in the
repository (since the last update) and
the changes in the working copy.

Ekkart Kindler

50SE2 (02162 e20), L04

Merge: Scenario 1

file.txt file.txt

Changes in repository
(by a commit of a different user)

Changes in working copy

file.txt

Ekkart Kindler

51SE2 (02162 e20), L04

Merge: Scenario 1

file.txt file.txt

Changes in repository Updated working copy

update

Ekkart Kindler

52SE2 (02162 e20), L04

Merge: Scenario 2

file.txt file.txt

Changes in repository Changes in working copy

file.txt

Ekkart Kindler

53SE2 (02162 e20), L04

Merge: Scenario 2

file.txt file.txt

Changes in repository Changes in working copy

file.txt

update

Conflict

Ekkart Kindler

54SE2 (02162 e20), L04

Conflicts

 Conflicts will be indicated in the files in the
working copy:
<<<<<<

Change 1

Change 2
>>>>>>

 Conflicts must be resolved manually by the
user in his working copy.

Ekkart Kindler

55SE2 (02162 e20), L04

Remarks: Binary Files

 Merges make sense in text files only!
 Binary files should not be merged.
 Which files are binary must be made explicit to

the version management system.

 MS Word documents are binary for most
version management systems

Ekkart Kindler

56SE2 (02162 e20), L04

Problems

 What happens, when the user executes a
commit without getting all changes from the
repository first?

 Impossible!!

Before committing, a user needs to
execute an update (and if necessary
resolve the conflict).

 By this strategy conflicts
only occur in working copies!

 There is always a user
responsible for resolving it.

Ekkart Kindler

57SE2 (02162 e20), L04

Comparison

Pessimistic approach:
+ no conflicts
-- no concurrent work on the same object

(for long files or „forgotten“ check-ins this is very
problematic)

Optimistic Approach:
- conflicts (fortunately very rare)
++ concurrent work possible

(the last one needs to clean up the mess)

Ekkart Kindler

58SE2 (02162 e20), L04

Comparison

For typical software projects (big teams
working concurrently), optimistic consistency
mechanisms have turned out to be more
appropriate:
 concurrent work
 in combination with responsibilities,

conflicts are rare

Ekkart Kindler

59SE2 (02162 e20), L04

Typical scenario

Version
management
system

Ekkart Kindler

60SE2 (02162 e20), L04

Typical scenario

Version
management
system

Ekkart Kindler

61SE2 (02162 e20), L04

Typical scenario

> commit
> commit
up-to-date
check failed

Version
management
system

Ekkart Kindler

62SE2 (02162 e20), L04

Typical scenario

> commit
> commit
up-to-date
check failed

> update
M file.txt

Version
management
system

Ekkart Kindler

63SE2 (02162 e20), L04

Typical scenario

> commit
> commit
up-to-date
check failed

> update
M file.txt
> commit Version

management
system

Ekkart KindlerMore Concepts

 every commit automatically creates a new version
of the file with a new version number
 we can retrieve earlier versions of a file and go back

to earlier versions
 we can compare different versions of a file
 we can define different configurations (branches) of

the same project
 we can define releases (a set of related versions of

files)

64SE2 (02162 e20), L04

Ekkart Kindler

65SE2 (02162 e20), L04

Configurations and releases

Main.java Appl.java index.html main.html

V1

V2.0 V1.1

V2.1 V1.2

V1.3

V1.4

V1

V1.1

V1 V1

V1.1

V1.2

V1.3

V1.4
Configuration:
today (head)
release

Ekkart KindlerMore Concepts

 every commit can (and should) be accompanied
by a brief comment what changes were made (and
why)
 Users can automatically be notified by changes
 Change history shows who made which changes at

which time (for a single file or a complete project).

66SE2 (02162 e20), L04

Ekkart Kindler

67SE2 (02162 e20), L04

More Concepts

 you can “tag” some versions (in SVN this is
done by “SVN copying” a file to a specific
“tags” directory

 …

Ekkart Kindler

68SE2 (02162 e20), L04

Guideline

Which documents should be in a repository?

All
documents and files that belong to the software
and the development process

which cannot be automatically reproduced from
other files or documents (by all other users).

Ekkart KindlerGit

 A decentralized version of a repository
 Concepts:
 Commit objects:

a set of files with changes with respect to parent commit
objects

 References to commit objects: in particular HEAD
(symbolic reference to head of current branch)

 Local repository:
 Commit, checkout, merge, branch

 Remote repositories:
 Remote repository reference (typically: origin)
 Clone, tracking, fetch, pull (= fetch+merge), push

69SE2 (02162 e20), L04

Ekkart KindlerGit

 Git stores versions (commit objects) in snapshots
of the current files (as opposed to deltas)

 Each commit (object) has its checksum, which is
used for identifying it

 One commit can have one or more parents (merge)
 Commits can be referenced (in particular HEAD)
 Explicit notion of tags (lightweight and annotated):

basically tags are branches that cannot change

 Files in working directory need to be staged (added
to index) for the commit

70SE2 (02162 e20), L04

Ekkart KindlerGit

 Branch: create a new branch in a repository; e.g.
for some experiments, which should not go to the
master branch

 Merge: Merge all changes made of two branches
(based on the common ancestor).

71SE2 (02162 e20), L04

Ekkart KindlerGit

 Cherry Pick one or several commits:
Apply all changes (!) of the picked
commits to a branch

 Rebase: Can be considered as a special form
of cherry-picking

72SE2 (02162 e20), L04

Ekkart KindlerPull request / Merge request

 Makes changes (from some branch/repository)
available, and asks some people for reviewing,
changing, extending, and then merging these
changes (into some other branch/repository)

73SE2 (02162 e20), L04

Ekkart KindlerGit: Links

Git Concepts
 https://www.sbf5.com/~cduan/technical/git/
 https://git-scm.com/book/en/v2

Practical use:
 GitHub: https://guides.github.com/activities/hello-world

 eGit: https://wiki.eclipse.org/EGit/User_Guide

 Workflow:
https://www.atlassian.com/git/tutorials/comparing-workflows

74SE2 (02162 e20), L04

https://www.sbf5.com/%7Ecduan/technical/git/
https://git-scm.com/book/en/v2
https://guides.github.com/activities/hello-world
https://wiki.eclipse.org/EGit/User_Guide
https://www.atlassian.com/git/tutorials/comparing-workflows

IV. Working together
IV.5. Collaborative Development

Environments (CDE)

Ekkart Kindler

76SE2 (02162 e20), L04

CDEs: Idea

Streamline communication among different
stakeholders in a development process – often
web interface on top of a version management
system

Ekkart Kindler

77SE2 (02162 e20), L04

Concepts

 Users
 Roles (responsibilities, skills)
 Tasks (development, bug fix, …)
 Task tracking (live cycle of a task)
 Communication (smoothly integrated)
 notifications
 more or less structured discussions

(wiki, news, email, …)

	Software Engineering 2�A practical course in software engineering
	IV. Working Together
	Working together
	Dias nummer 4
	IV. Working together�IV.1. Management
	Definition
	Management Goals
	Short- vs. Long-term Goals
	Long-term measures
	Short- vs. Long-term
	Management
	Management
	Management cycle
	IV. Working together�IV.2. Coordination
	Mechanisms
	Clear Responsibilities
	Communication
	Four sides of a statement�(after Schulz von Thun)
	Four sides of a statement�(after Schulz von Thun)
	Good Leadership
	Rules for Leaders
	Rules for Leaders
	Rules for Leaders
	Rules for Leaders
	IV. Working together�IV.3. Process models
	Waterfall Model
	Process Models
	Meta model
	Project plan
	Project plans
	Milestones
	How to chose milestones
	Not a milestone
	The V-Model (rough idea)
	Other models
	IV. Working together�IV.4. Version Management
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Version Management Systems
	Mechanisms
	Optimistic Approach
	Optimistic Approach
	Optimistic Approach
	Problem
	Merge: Scenario 1
	Merge: Scenario 1
	Merge: Scenario 2
	Merge: Scenario 2
	Conflicts
	Remarks: Binary Files
	Problems
	Comparison
	Comparison
	Typical scenario
	Typical scenario
	Typical scenario
	Typical scenario
	Typical scenario
	More Concepts
	Configurations and releases
	More Concepts
	More Concepts
	Guideline
	Git
	Git
	Git
	Git
	Pull request / Merge request
	Git: Links
	IV. Working together�IV.5. Collaborative Development�	Environments (CDE)
	CDEs: Idea
	Concepts

